Suppr超能文献

SQANTI-SIM:用于长读长RNA测序基准测试的可控转录本新颖性模拟器

SQANTI-SIM: a simulator of controlled transcript novelty for lrRNA-seq benchmark.

作者信息

Mestre-Tomás Jorge, Liu Tianyuan, Pardo-Palacios Francisco, Conesa Ana

机构信息

Institute for Integrative Systems Biology, Spanish National Research Council, Catedràtic Agustín Escardino Benlloch, Paterna, 46980, Spain.

出版信息

bioRxiv. 2023 Aug 24:2023.08.23.554392. doi: 10.1101/2023.08.23.554392.

Abstract

Long-read RNA-seq has emerged as a powerful tool for transcript discovery, even in well-annotated organisms. However, assessing the accuracy of different methods in identifying annotated and novel transcripts remains a challenge. Here, we present SQANTI-SIM, a versatile utility that wraps around popular long-read simulators to allow precise management of transcript novelty based on the structural categories defined by SQANTI3. By selectively excluding specific transcripts from the reference dataset, SQANTI-SIM effectively emulates scenarios involving unannotated transcripts. Furthermore, the tool provides customizable features and supports the simulation of additional types of data, representing the first multi-omics simulation tool for the lrRNA-seq field. We demonstrate the effectiveness of SQANTI-SIM by benchmarking five transcriptome reconstruction pipelines using the simulated data.

摘要

长读长RNA测序已成为转录本发现的强大工具,即使在注释完善的生物体中也是如此。然而,评估不同方法在识别注释转录本和新转录本方面的准确性仍然是一项挑战。在此,我们展示了SQANTI-SIM,这是一种通用工具,它围绕流行的长读长模拟器构建,能够基于SQANTI3定义的结构类别对转录本新颖性进行精确管理。通过从参考数据集中选择性地排除特定转录本,SQANTI-SIM有效地模拟了涉及未注释转录本的情况。此外,该工具提供了可定制的功能,并支持模拟其他类型的数据,代表了长读长RNA测序领域的首个多组学模拟工具。我们通过使用模拟数据对五条转录组重建流程进行基准测试,证明了SQANTI-SIM的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7453/10473693/8ce4a8475a51/nihpp-2023.08.23.554392v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验