Suppr超能文献

超高密度电极可改善神经元记录中的检测、产量及细胞类型识别。

Ultra-high density electrodes improve detection, yield, and cell type identification in neuronal recordings.

作者信息

Ye Zhiwen, Shelton Andrew M, Shaker Jordan R, Boussard Julien, Colonell Jennifer, Birman Daniel, Manavi Sahar, Chen Susu, Windolf Charlie, Hurwitz Cole, Namima Tomoyuki, Pedraja Federico, Weiss Shahaf, Raducanu Bogdan, Ness Torbjørn V, Jia Xiaoxuan, Mastroberardino Giulia, Rossi L Federico, Carandini Matteo, Häusser Michael, Einevoll Gaute T, Laurent Gilles, Sawtell Nathaniel B, Bair Wyeth, Pasupathy Anitha, Lopez Carolina Mora, Dutta Barun, Paninski Liam, Siegle Joshua H, Koch Christof, Olsen Shawn R, Harris Timothy D, Steinmetz Nicholas A

机构信息

Department of Biological Structure, University of Washington, Seattle, WA, USA.

MindScope Program, Allen Institute, Seattle, WA, USA.

出版信息

bioRxiv. 2024 Apr 10:2023.08.23.554527. doi: 10.1101/2023.08.23.554527.

Abstract

To understand the neural basis of behavior, it is essential to sensitively and accurately measure neural activity at single neuron and single spike resolution. Extracellular electrophysiology delivers this, but it has biases in the neurons it detects and it imperfectly resolves their action potentials. To minimize these limitations, we developed a silicon probe with much smaller and denser recording sites than previous designs, called Neuropixels Ultra (). This device samples neuronal activity at ultra-high spatial density (~10 times higher than previous probes) with low noise levels, while trading off recording span. NP Ultra is effectively an implantable voltage-sensing camera that captures a planar image of a neuron's electrical field. We use a spike sorting algorithm optimized for these probes to demonstrate that the yield of visually-responsive neurons in recordings from mouse visual cortex improves up to ~3-fold. We show that NP Ultra can record from small neuronal structures including axons and dendrites. Recordings across multiple brain regions and four species revealed a subset of extracellular action potentials with unexpectedly small spatial spread and axon-like features. We share a large-scale dataset of these brain-wide recordings in mice as a resource for studies of neuronal biophysics. Finally, using ground-truth identification of three major inhibitory cortical cell types, we found that these cell types were discriminable with approximately 75% success, a significant improvement over lower-resolution recordings. NP Ultra improves spike sorting performance, detection of subcellular compartments, and cell type classification to enable more powerful dissection of neural circuit activity during behavior.

摘要

为了理解行为的神经基础,以单神经元和单峰分辨率灵敏且准确地测量神经活动至关重要。细胞外电生理学能够实现这一点,但它在检测的神经元方面存在偏差,并且对其动作电位的分辨率也不完善。为了尽量减少这些限制,我们开发了一种硅探针,其记录位点比以前的设计更小、更密集,称为Neuropixels Ultra()。该设备以超低噪声水平在超高空间密度下(比以前的探针高约10倍)对神经元活动进行采样,同时牺牲了记录跨度。NP Ultra实际上是一种可植入的电压感应相机,可捕捉神经元电场的平面图像。我们使用针对这些探针优化的尖峰分类算法来证明,从小鼠视觉皮层记录中视觉反应神经元的产量提高了约3倍。我们表明NP Ultra可以从小的神经元结构(包括轴突和树突)进行记录。在多个脑区和四个物种上的记录揭示了一部分细胞外动作电位,其空间传播意外地小且具有轴突样特征。我们分享了小鼠这些全脑记录的大规模数据集,作为神经元生物物理学研究的资源。最后,通过对三种主要抑制性皮层细胞类型的真实鉴定,我们发现这些细胞类型的辨别成功率约为75%,比低分辨率记录有显著提高。NP Ultra提高了尖峰分类性能、亚细胞区室的检测以及细胞类型分类,从而能够在行为过程中更有力地剖析神经回路活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb0/11017883/13c7e6a184d3/nihpp-2023.08.23.554527v3-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验