Stavropoulos Akis, Lakshminarasimhan Kaushik J, Angelaki Dora E
Center for Neural Science, New York University, New York, NY, USA.
Center for Theoretical Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA.
bioRxiv. 2023 Aug 22:2023.08.21.554107. doi: 10.1101/2023.08.21.554107.
Neural network models optimized for task performance often excel at predicting neural activity but do not explain other properties such as the distributed representation across functionally distinct areas. Distributed representations may arise from animals' strategies for resource utilization, however, fixation-based paradigms deprive animals of a vital resource: eye movements. During a naturalistic task in which humans use a joystick to steer and catch flashing fireflies in a virtual environment lacking position cues, subjects physically track the latent task variable with their gaze. We show this strategy to be true also during an inertial version of the task in the absence of optic flow and demonstrate that these task-relevant eye movements reflect an embodiment of the subjects' dynamically evolving internal beliefs about the goal. A neural network model with tuned recurrent connectivity between oculomotor and evidence-integrating frontoparietal circuits accounted for this behavioral strategy. Critically, this model better explained neural data from monkeys' posterior parietal cortex compared to task-optimized models unconstrained by such an oculomotor-based cognitive strategy. These results highlight the importance of unconstrained movement in working memory computations and establish a functional significance of oculomotor signals for evidence-integration and navigation computations via embodied cognition.
针对任务表现进行优化的神经网络模型通常在预测神经活动方面表现出色,但无法解释其他属性,例如跨功能不同区域的分布式表征。然而,分布式表征可能源于动物的资源利用策略,基于注视的范式剥夺了动物一项至关重要的资源:眼球运动。在一项自然主义任务中,人类在缺乏位置线索的虚拟环境中使用操纵杆来操控并捕捉闪烁的萤火虫,受试者会用目光实际追踪潜在的任务变量。我们表明,在没有视觉流的任务惯性版本中,这一策略同样适用,并证明这些与任务相关的眼球运动反映了受试者对目标的动态演变的内部信念的一种体现。一个在动眼神经和整合证据的额顶叶回路之间具有调整后的循环连接的神经网络模型解释了这种行为策略。至关重要的是,与不受这种基于动眼神经的认知策略约束的任务优化模型相比,该模型能更好地解释猴子后顶叶皮层的神经数据。这些结果凸显了无约束运动在工作记忆计算中的重要性,并通过具身认知确立了动眼神经信号对于证据整合和导航计算的功能意义。