Center for Neural Science, New York University, New York City, United States.
Center for Theoretical Neuroscience, Columbia University, New York, United States.
Elife. 2022 Oct 25;11:e80280. doi: 10.7554/eLife.80280.
We do not understand how neural nodes operate and coordinate within the recurrent action-perception loops that characterize naturalistic self-environment interactions. Here, we record single-unit spiking activity and local field potentials (LFPs) simultaneously from the dorsomedial superior temporal area (MSTd), parietal area 7a, and dorsolateral prefrontal cortex (dlPFC) as monkeys navigate in virtual reality to 'catch fireflies'. This task requires animals to actively sample from a closed-loop virtual environment while concurrently computing continuous latent variables: (i) the distance and angle travelled (i.e., path integration) and (ii) the distance and angle to a memorized firefly location (i.e., a hidden spatial goal). We observed a patterned mixed selectivity, with the prefrontal cortex most prominently coding for latent variables, parietal cortex coding for sensorimotor variables, and MSTd most often coding for eye movements. However, even the traditionally considered sensory area (i.e., MSTd) tracked latent variables, demonstrating path integration and vector coding of hidden spatial goals. Further, global encoding profiles and unit-to-unit coupling (i.e., noise correlations) suggested a functional subnetwork composed by MSTd and dlPFC, and not between these and 7a, as anatomy would suggest. We show that the greater the unit-to-unit coupling between MSTd and dlPFC, the more the animals' gaze position was indicative of the ongoing location of the hidden spatial goal. We suggest this MSTd-dlPFC subnetwork reflects the monkeys' natural and adaptive task strategy wherein they continuously gaze toward the location of the (invisible) target. Together, these results highlight the distributed nature of neural coding during closed action-perception loops and suggest that fine-grain functional subnetworks may be dynamically established to subserve (embodied) task strategies.
我们不了解神经节点如何在自然主义自我-环境相互作用的递归动作感知循环中运作和协调。在这里,我们记录了猴子在虚拟现实中“捕捉萤火虫”时,来自背内侧上颞区 (MSTd)、顶叶区 7a 和背外侧前额叶皮层 (dlPFC) 的单个单元尖峰活动和局部场电位 (LFP)。 这个任务要求动物在主动从闭环虚拟环境中采样的同时,同时计算连续的潜在变量:(i) 已行驶的距离和角度(即路径积分)和 (ii) 到记忆中萤火虫位置的距离和角度(即隐藏的空间目标)。 我们观察到一种有模式的混合选择性,前额叶皮层最突出地编码潜在变量,顶叶皮层编码感觉运动变量,MSTd 最常编码眼球运动。 然而,即使是传统上被认为是感觉区的 MSTd 也跟踪潜在变量,表现出对隐藏空间目标的路径积分和向量编码。 此外,全局编码特征和单元间耦合(即噪声相关性)表明由 MSTd 和 dlPFC 组成的功能子网,而不是这些与 7a 之间,这与解剖结构所暗示的相反。 我们表明,MSTd 和 dlPFC 之间的单元间耦合越大,动物的注视位置越能指示隐藏空间目标的当前位置。 我们认为,MSTd-dlPFC 子网反映了猴子自然和自适应的任务策略,即在不断注视看不见的目标位置。 总之,这些结果突出了封闭动作感知循环中神经编码的分布式性质,并表明可能动态建立细粒度的功能子网以支持(体现)任务策略。