Munyemana Jean Claude, He Huixia, Fu Caihong, Fan Yirui, Sun Xiuxia, Xiao Jianxi
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China.
ACS Omega. 2023 Aug 16;8(34):30879-30887. doi: 10.1021/acsomega.3c01467. eCollection 2023 Aug 29.
The synthesis of calcium carbonate with controlled morphology is crucial for its biomedical applications. In this study, we synthesized well-ordered porous calcium carbonate nanospheres using recombinant collagen as a biomineralization template. Porous collagen-calcium carbonate was created by incubating calcium chloride and sodium carbonate with collagen biotemplates at room temperature. Our results show that the recombinant collagen-calcium carbonate nanomaterials underwent a morphological transition from solid nanospheres to more porous nanospheres and a phase transformation from vaterite to a mixture of calcite and vaterite. This study highlights the crucial role of recombinant collagen in modulating the morphology and crystallinity of calcium carbonate nanoparticles. Importantly, the highly porous recombinant collagen-calcium carbonate hybrid nanospheres demonstrated superior loading efficacy for the model drug cefoperazone. Furthermore, the drug loading and releasing results suggest that hybrid nanospheres have the potential to be robust and biocompatible pH-responsive drug carriers. Our findings suggest that recombinant collagen's unique amino acid content and rodlike structure make it a superior template for biomineralized synthesis. This study provides a promising avenue for the production of novel organic-inorganic nanostructures, with potential applications in biomedical fields such as drug delivery.
合成具有可控形态的碳酸钙对其生物医学应用至关重要。在本研究中,我们使用重组胶原蛋白作为生物矿化模板合成了排列有序的多孔碳酸钙纳米球。通过在室温下将氯化钙和碳酸钠与胶原蛋白生物模板孵育,制备了多孔胶原蛋白 - 碳酸钙。我们的结果表明,重组胶原蛋白 - 碳酸钙纳米材料经历了从实心纳米球到更多孔纳米球的形态转变以及从球霰石到方解石和球霰石混合物的相变。本研究突出了重组胶原蛋白在调节碳酸钙纳米颗粒形态和结晶度方面的关键作用。重要的是,高度多孔的重组胶原蛋白 - 碳酸钙杂化纳米球对模型药物头孢哌酮表现出优异的负载效率。此外,药物负载和释放结果表明,杂化纳米球有潜力成为强大且生物相容的pH响应性药物载体。我们的研究结果表明,重组胶原蛋白独特的氨基酸含量和棒状结构使其成为生物矿化合成的优异模板。本研究为新型有机 - 无机纳米结构的生产提供了一条有前景的途径,在药物递送等生物医学领域具有潜在应用。