Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, 560029 Karnataka, India.
Department of Food Science and Biotechnology, College of Life Science, Sejong University, 05006 Seoul, Republic of Korea.
Front Biosci (Landmark Ed). 2023 Aug 17;28(8):169. doi: 10.31083/j.fbl2808169.
Methods like the bio-synthesis of silver nanoparticles (Ag NPs) using plant extracts have become promising due to their eco-friendly approach. The study aimed to examine the utilization of fruit phytochemicals as agents in the biosynthesis of Ag NPs, evaluation of the antimicrobial, antioxidant, and anti-cancerous properties, as well as the photocatalytic ability of bio-synthesized Ag NPs against Crystal Violet (CV), a triphenylmethane dye.
The characterization of the physical properties of the Ag NPs synthesized via the green route was done using UV-Vis spectrophotometry (UV-Vis), X-ray Diffraction (XRD), Fourier Transform Infrared Spectrophotometry (FTIR), Scanning Electron Microscopy (SEM), Zeta potential analysis, and Transmission Electron Microscopy (TEM). The dye degradation efficiency of CV was determined using synthesized Ag NPs under UV light by analyzing the absorption maximum at 579 nm. The antimicrobial efficacy of Ag NPs against and was examined using the broth dilution method. The antioxidant and anti-cancer properties of the synthesized Ag NPs were assessed using the DPPH and MTT assays.
The UV analysis revealed that the peak of synthesized Ag NPs was 442 nm. Data from FTIR, XRD, Zeta potential, SEM, and TEM analysis confirmed the formation of nanoparticles. The SEM and TEM analysis identified the presence of spherical nanoparticles with an average size of 29.12 nm and 24.18 nm, respectively. Maximum dye degradation efficiency of CV was observed at 90.08% after 320 min without any silver leaching, confirming the photocatalytic activity of Ag NPs. The bio-efficiency of the treatment was assessed using the root growth inhibition test, toxicity analysis on and Brine shrimp lethality assay.
The findings revealed the environmentally friendly nature of green Ag NPs over physical/chemically synthesized Ag NPs. The synthesized Ag NPs can effectively be used in biomedical and photocatalytic applications.
利用植物提取物进行银纳米粒子(Ag NPs)的生物合成等方法因其环保方法而变得颇具前景。本研究旨在探讨利用水果植物化学物质作为Ag NPs 生物合成的试剂,评估其抗菌、抗氧化和抗癌特性,以及生物合成的 Ag NPs 对结晶紫(CV)的光催化能力,CV 是一种三苯甲烷染料。
通过紫外可见分光光度法(UV-Vis)、X 射线衍射(XRD)、傅里叶变换红外光谱法(FTIR)、扫描电子显微镜(SEM)、Zeta 电位分析和透射电子显微镜(TEM)对通过绿色路线合成的 Ag NPs 的物理性质进行了表征。通过在 UV 光下分析最大吸收波长在 579nm 处的 CV,确定了合成 Ag NPs 对 CV 染料的降解效率。使用肉汤稀释法检测 Ag NPs 对 和 的抗菌效果。使用 DPPH 和 MTT 测定法评估了合成 Ag NPs 的抗氧化和抗癌特性。
UV 分析表明,合成 Ag NPs 的峰值为 442nm。FTIR、XRD、Zeta 电位、SEM 和 TEM 分析的数据证实了纳米粒子的形成。SEM 和 TEM 分析确定了存在平均粒径为 29.12nm 和 24.18nm 的球形纳米粒子。在 320 分钟内没有任何银浸出的情况下,CV 的最大染料降解效率为 90.08%,证实了 Ag NPs 的光催化活性。通过根生长抑制试验、对 和盐水虾致死性试验的毒性分析评估了处理的生物效率。
研究结果表明,与物理/化学合成的 Ag NPs 相比,绿色 Ag NPs 具有环境友好性。合成的 Ag NPs 可有效用于生物医学和光催化应用。