Suppr超能文献

湮灭网络:用于动态 MRI 的学习湮灭关系。

Annihilation-Net: Learned annihilation relation for dynamic MR imaging.

机构信息

Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Med Phys. 2024 Mar;51(3):1883-1898. doi: 10.1002/mp.16723. Epub 2023 Sep 4.

Abstract

BACKGROUND

Deep learning methods driven by the low-rank regularization have achieved attractive performance in dynamic magnetic resonance (MR) imaging. The effectiveness of existing methods lies mainly in their ability to capture interframe relationships using network modules, which are lack interpretability.

PURPOSE

This study aims to design an interpretable methodology for modeling interframe relationships using convolutiona networks, namely Annihilation-Net and use it for accelerating dynamic MRI.

METHODS

Based on the equivalence between Hankel matrix product and convolution, we utilize convolutional networks to learn the null space transform for characterizing low-rankness. We employ low-rankness to represent interframe correlations in dynamic MR imaging, while combining with sparse constraints in the compressed sensing framework. The corresponding optimization problem is solved in an iterative form with the semi-quadratic splitting method (HQS). The iterative steps are unrolled into a network, dubbed Annihilation-Net. All the regularization parameters and null space transforms are set as learnable in the Annihilation-Net.

RESULTS

Experiments on the cardiac cine dataset show that the proposed model outperforms other competing methods both quantitatively and qualitatively. The training set and test set have 800 and 118 images, respectively.

CONCLUSIONS

The proposed Annihilation-Net improves the reconstruction quality of accelerated dynamic MRI with better interpretability.

摘要

背景

基于低秩正则化的深度学习方法在动态磁共振成像中取得了引人注目的性能。现有方法的有效性主要在于它们使用网络模块捕捉帧间关系的能力,而这些模块缺乏可解释性。

目的

本研究旨在设计一种使用卷积网络建模帧间关系的可解释方法,即湮灭网络,并将其用于加速动态磁共振成像。

方法

基于 Hankel 矩阵乘积和卷积的等价性,我们利用卷积网络学习用于描述低秩性的零空间变换。我们利用低秩性来表示动态磁共振成像中的帧间相关性,同时结合压缩感知框架中的稀疏约束。相应的优化问题采用半二次分裂法(HQS)以迭代形式求解。迭代步骤展开为一个网络,称为湮灭网络。在湮灭网络中,所有正则化参数和零空间变换都被设置为可学习的。

结果

在心脏电影数据集上的实验表明,所提出的模型在定量和定性方面都优于其他竞争方法。训练集和测试集分别有 800 张和 118 张图像。

结论

所提出的湮灭网络提高了加速动态磁共振成像的重建质量,具有更好的可解释性。

相似文献

1
Annihilation-Net: Learned annihilation relation for dynamic MR imaging.
Med Phys. 2024 Mar;51(3):1883-1898. doi: 10.1002/mp.16723. Epub 2023 Sep 4.
2
Deep low-Rank plus sparse network for dynamic MR imaging.
Med Image Anal. 2021 Oct;73:102190. doi: 10.1016/j.media.2021.102190. Epub 2021 Jul 24.
3
Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
Med Phys. 2023 May;50(5):2939-2960. doi: 10.1002/mp.16182. Epub 2023 Jan 17.
4
Learned Low-Rank Priors in Dynamic MR Imaging.
IEEE Trans Med Imaging. 2021 Dec;40(12):3698-3710. doi: 10.1109/TMI.2021.3096218. Epub 2021 Nov 30.
5
An unrolled neural network for accelerated dynamic MRI based on second-order half-quadratic splitting model.
Magn Reson Imaging. 2024 Nov;113:110218. doi: 10.1016/j.mri.2024.110218. Epub 2024 Jul 26.
7
HFIST-Net: High-throughput fast iterative shrinkage thresholding network for accelerating MR image reconstruction.
Comput Methods Programs Biomed. 2023 Apr;232:107440. doi: 10.1016/j.cmpb.2023.107440. Epub 2023 Feb 24.
8
A cascade of preconditioned conjugate gradient networks for accelerated magnetic resonance imaging.
Comput Methods Programs Biomed. 2022 Oct;225:107090. doi: 10.1016/j.cmpb.2022.107090. Epub 2022 Aug 29.
9
Deep compressed sensing MRI via a gradient-enhanced fusion model.
Med Phys. 2023 Mar;50(3):1390-1405. doi: 10.1002/mp.16164. Epub 2023 Feb 6.
10
k -Space Deep Learning for Accelerated MRI.
IEEE Trans Med Imaging. 2020 Feb;39(2):377-386. doi: 10.1109/TMI.2019.2927101. Epub 2019 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验