IEEE Trans Med Imaging. 2021 Dec;40(12):3698-3710. doi: 10.1109/TMI.2021.3096218. Epub 2021 Nov 30.
Deep learning methods have achieved attractive performance in dynamic MR cine imaging. However, most of these methods are driven only by the sparse prior of MR images, while the important low-rank (LR) prior of dynamic MR cine images is not explored, which may limit further improvements in dynamic MR reconstruction. In this paper, a learned singular value thresholding (Learned-SVT) operator is proposed to explore low-rank priors in dynamic MR imaging to obtain improved reconstruction results. In particular, we put forward a model-based unrolling sparse and low-rank network for dynamic MR imaging, dubbed as SLR-Net. SLR-Net is defined over a deep network flow graph, which is unrolled from the iterative procedures in the iterative shrinkage-thresholding algorithm (ISTA) for optimizing a sparse and LR-based dynamic MRI model. Experimental results on a single-coil scenario show that the proposed SLR-Net can further improve the state-of-the-art compressed sensing (CS) methods and sparsity-driven deep learning-based methods with strong robustness to different undersampling patterns, both qualitatively and quantitatively. Besides, SLR-Net has been extended to a multi-coil scenario, and achieved excellent reconstruction results compared with a sparsity-driven multi-coil deep learning-based method under a high acceleration. Prospective reconstruction results on an open real-time dataset further demonstrate the capability and flexibility of the proposed method on real-time scenarios.
深度学习方法在动态磁共振电影成像中取得了吸引人的性能。然而,这些方法中的大多数仅由 MR 图像的稀疏先验驱动,而动态磁共振电影图像的重要低秩 (LR) 先验并未被探索,这可能限制了动态磁共振重建的进一步改进。在本文中,我们提出了一种基于学习的奇异值阈值 (Learned-SVT) 算子,以探索动态磁共振成像中的低秩先验,从而获得改进的重建结果。具体来说,我们提出了一种基于模型的动态磁共振成像稀疏和低秩网络,称为 SLR-Net。SLR-Net 定义在深度网络流图上,该流图是从迭代收缩阈值算法 (ISTA) 的迭代过程中展开的,用于优化基于稀疏和 LR 的动态 MRI 模型。单线圈场景的实验结果表明,所提出的 SLR-Net 可以进一步提高基于压缩感知 (CS) 的最新方法和基于稀疏驱动的深度学习方法的性能,并且对不同欠采样模式具有很强的鲁棒性,无论是在定性还是定量方面。此外,我们还将 SLR-Net 扩展到了多线圈场景,并在高加速下与基于稀疏驱动的多线圈深度学习方法相比,实现了出色的重建结果。在一个开放的实时数据集上的前瞻性重建结果进一步证明了该方法在实时场景中的能力和灵活性。