National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
University of Chinese Academy of Sciences, Beijing, China.
Nat Plants. 2023 Oct;9(10):1709-1719. doi: 10.1038/s41477-023-01509-7. Epub 2023 Sep 4.
Abscisic acid (ABA) is one of the plant hormones that regulate various physiological processes, including stomatal closure, seed germination and development. ABA is synthesized mainly in vascular tissues and transported to distal sites to exert its physiological functions. Many ABA transporters have been identified, however, the molecular mechanism of ABA transport remains elusive. Here we report the cryogenic electron microscopy structure of the Arabidopsis thaliana adenosine triphosphate-binding cassette G subfamily ABA exporter ABCG25 (AtABCG25) in inward-facing apo conformation, ABA-bound pre-translocation conformation and outward-facing occluded conformation. Structural and biochemical analyses reveal that the ABA bound with ABCG25 adopts a similar configuration as that in ABA receptors and that the ABA-specific binding is dictated by residues from transmembrane helices TM1, TM2 and TM5a of each protomer at the transmembrane domain interface. Comparison of different conformational structures reveals conformational changes, especially those of transmembrane helices and residues constituting the substrate translocation pathway during the cross-membrane transport process. Based on the structural data, a 'gate-flipper' translocation model of ABCG25-mediated ABA cross-membrane transport is proposed. Our structural data on AtABCG25 provide new clues to the physiological study of ABA and shed light on its potential applications in plants and agriculture.
脱落酸(ABA)是调节各种生理过程的植物激素之一,包括气孔关闭、种子萌发和发育。ABA 主要在血管组织中合成,并被运输到远端部位发挥其生理功能。已经鉴定出许多 ABA 转运体,但 ABA 转运的分子机制仍不清楚。在这里,我们报告了拟南芥腺苷三磷酸结合盒 G 亚家族 ABA 外排 ABCG25(AtABCG25)在内向失活构象、ABA 结合的前转运构象和外向闭塞构象中的低温电子显微镜结构。结构和生化分析表明,与 ABCG25 结合的 ABA 采用与 ABA 受体中相似的构象,并且 ABA 的特异性结合由跨膜域界面每个单体的跨膜螺旋 TM1、TM2 和 TM5a 中的残基决定。不同构象结构的比较揭示了构象变化,特别是在跨膜运输过程中跨膜螺旋和构成底物转运途径的残基的构象变化。基于结构数据,提出了 ABCG25 介导的 ABA 跨膜转运的“门翻转”转运模型。我们对 AtABCG25 的结构数据为 ABA 的生理研究提供了新的线索,并为其在植物和农业中的潜在应用提供了启示。