Suppr超能文献

植物ABCB转运蛋白在脂质膜中的构象循环及小分子抑制机制

Conformational cycle and small-molecule inhibition mechanism of a plant ABCB transporter in lipid membranes.

作者信息

Liu Yong, Liao Maofu

机构信息

Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.

Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.

出版信息

Sci Adv. 2025 Jun 13;11(24):eadv9721. doi: 10.1126/sciadv.adv9721.

Abstract

In plants, ATP-binding cassette (ABC) transporters are crucial for nutrient uptake, phytohormone transport, and environmental response. It is of great interest to understand the mechanisms of these transporters and develop small-molecule modulators to regulate plant growth. ABCB19 was recently shown to transport brassinosteroid, shaping hormone dynamics and plant architecture. However, the conformational cycle and inhibitor mechanism of ABCB transporters remain elusive. We reconstituted ABCB19 into lipid nanodiscs, where activity was drastically higher than in detergents, and determined its cryo-electron microscopy structures in substrate-free, substrate-bound, vanadate-trapped, and inhibitor-bound states. Inward-facing ABCB19 moved inward upon substrate binding and fully closed with vanadate trapping, unexpectedly temperature dependent. Two inhibitor molecules locked ABCB19 in the inward-facing conformation. Mutagenesis identified key residues for substrate and inhibitor binding, revealing differential contributions to transporter function and inhibition. These results deepen knowledge of plant ABCB transporters, laying a foundation for targeted manipulation to enhance plant resilience and productivity.

摘要

在植物中,ATP结合盒(ABC)转运蛋白对于养分吸收、植物激素运输和环境响应至关重要。了解这些转运蛋白的机制并开发小分子调节剂来调节植物生长具有重要意义。最近研究表明,ABCB19负责油菜素内酯的运输,塑造激素动态和植物形态。然而,ABCB转运蛋白的构象循环和抑制机制仍不清楚。我们将ABCB19重组到脂质纳米盘中,其活性比在去污剂中大幅提高,并确定了其在无底物、底物结合、钒酸盐捕获和抑制剂结合状态下的冷冻电子显微镜结构。向内的ABCB19在底物结合时向内移动,并在钒酸盐捕获时完全关闭,出乎意料的是这依赖于温度。两个抑制剂分子将ABCB19锁定在内向构象中。诱变鉴定了底物和抑制剂结合的关键残基,揭示了对转运蛋白功能和抑制的不同贡献。这些结果加深了对植物ABCB转运蛋白的认识,为有针对性地操纵以增强植物恢复力和生产力奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee72/12164952/2a70752a2345/sciadv.adv9721-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验