Yang Shuyi, Zhang Wensheng, Pan Guoliang, Chen Jiaying, Deng Jiayi, Chen Ke, Xie Xianglun, Han Dongxue, Dai Mengjiao, Niu Li
Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China.
Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou, 510230, P. R. China.
Angew Chem Int Ed Engl. 2023 Oct 23;62(43):e202312076. doi: 10.1002/anie.202312076. Epub 2023 Sep 14.
The effective conversion of carbon dioxide (CO ) and nitrogen (N ) into urea by photocatalytic reaction under mild conditions is considered to be a more environmentally friendly and promising alternative strategies. However, the weak adsorption and activation ability of inert gas on photocatalysts has become the main challenge that hinder the advancement of this technique. Herein, we have successfully established mesoporous CeO nanorods with adjustable oxygen vacancy concentration by heat treatment in Ar/H (90 % : 10 %) atmosphere, enhancing the targeted adsorption and activation of N and CO by introducing oxygen vacancies. Particularly, CeO -500 (CeO nanorods heated treatment at 500 °C) revealed high photocatalytic activity toward the C-N coupling reaction for urea synthesis with a remarkable urea yield rate of 15.5 μg/h. Besides, both aberration corrected transmission electron microscopy (AC-TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to research the atomic surface structure of CeO -500 at high resolution and to monitor the key intermediate precursors generated. The reaction mechanism of photocatalytic C-N coupling was studied in detail by combining Density Functional Theory (DFT) with specific experiments. We hope this work provides important inspiration and guiding significance towards highly efficient photocatalytic synthesis of urea.
在温和条件下通过光催化反应将二氧化碳(CO₂)和氮气(N₂)有效转化为尿素被认为是一种更环保且有前景的替代策略。然而,惰性气体在光催化剂上的弱吸附和活化能力已成为阻碍该技术发展的主要挑战。在此,我们通过在Ar/H₂(90% : 10%)气氛中进行热处理成功制备了具有可调氧空位浓度的介孔CeO₂纳米棒,通过引入氧空位增强了对N₂和CO₂的靶向吸附和活化。特别地,CeO₂-500(在500 °C下进行热处理的CeO₂纳米棒)对用于尿素合成的C-N偶联反应表现出高光催化活性,尿素产率高达15.5 μg/h。此外,使用像差校正透射电子显微镜(AC-TEM)和傅里叶变换红外(FT-IR)光谱对CeO₂-500的原子表面结构进行了高分辨率研究,并监测了生成的关键中间前体。通过将密度泛函理论(DFT)与具体实验相结合,详细研究了光催化C-N偶联的反应机理。我们希望这项工作能为高效光催化合成尿素提供重要的启发和指导意义。