Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany.
Plant Physiol. 2023 Nov 22;193(4):2538-2554. doi: 10.1093/plphys/kiad489.
Intercellular communication plays a central role in organogenesis. Tissue morphogenesis in Arabidopsis (Arabidopsis thaliana) requires signaling mediated by a cell surface complex containing the atypical receptor kinase STRUBBELIG (SUB) and the multiple C2 domains and transmembrane region protein QUIRKY (QKY). QKY is required to stabilize SUB at the plasma membrane. However, it is unclear what the in vivo architecture of the QKY/SUB signaling complex is, how it is controlled, and how it relates to the maintenance of SUB at the cell surface. We addressed these questions using a combination of genetics, yeast 2-hybrid assays, and Förster resonance energy transfer (FRET)/fluorescence lifetime imaging microscopy (FLIM) in epidermal cells of seedling roots. We found that QKY promotes the formation of SUB homooligomers in vivo. Homooligomerization of SUB appeared to involve its extracellular domain. We also showed that QKY and SUB physically interact and form a complex at the cell surface in vivo. In addition, the data showed that the N-terminal C2A-B region of QKY interacts with the intracellular domain of SUB. They further revealed that this interaction is essential to maintain SUB levels at the cell surface. Finally, we provided evidence that QKY forms homomultimers in vivo in a SUB-independent manner. We suggest a model in which the physical interaction of QKY with SUB mediates the oligomerization of SUB and attenuates its internalization, thereby maintaining sufficiently high levels of SUB at the cell surface required for the control of tissue morphogenesis.
细胞间通讯在器官发生中起着核心作用。拟南芥(Arabidopsis thaliana)组织形态发生需要由含有非典型受体激酶 STRUBBELIG(SUB)和多个 C2 结构域和跨膜区蛋白 QUIRKY(QKY)的细胞表面复合物介导的信号转导。QKY 是将 SUB 稳定在质膜上所必需的。然而,目前尚不清楚 QKY/SUB 信号复合物的体内结构是什么,它是如何被调控的,以及它与 SUB 在细胞表面的维持有何关系。我们通过遗传、酵母 2 杂交测定和表皮细胞中的Förster 共振能量转移(FRET)/荧光寿命成像显微镜(FLIM)组合在幼苗根的表皮细胞中解决了这些问题。我们发现 QKY 促进 SUB 同源寡聚体在体内的形成。SUB 的同源寡聚化似乎涉及其细胞外结构域。我们还表明 QKY 和 SUB 在体内物理相互作用并在细胞表面形成复合物。此外,数据表明 QKY 的 N 端 C2A-B 区域与 SUB 的细胞内结构域相互作用。它们进一步表明,这种相互作用对于维持 SUB 在细胞表面的水平是必不可少的。最后,我们提供了证据表明 QKY 以 SUB 独立的方式在体内形成同源多聚体。我们提出了一个模型,其中 QKY 与 SUB 的物理相互作用介导 SUB 的寡聚化并减弱其内化,从而维持细胞表面足够高的 SUB 水平,以控制组织形态发生。