Duan Lian, Zhang Mingshan, Nan Yiling, Jin Zhehui
School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
Langmuir. 2023 Sep 19;39(37):13019-13027. doi: 10.1021/acs.langmuir.3c01200. Epub 2023 Sep 5.
In this work, we conduct molecular dynamics simulations to investigate pressure-driven brine flow in silica mesopores under typical reservoir conditions (323 K and 20 MPa). While surface counterions accumulate strongly in the vicinity of fully deprotonated silica surfaces, water forms multilayer structures due to hydrogen bonding, counterion hydration, and excluded-volume effect. Brine flow behaviors exhibit adsorption, transition, and bulk-like regions in fully deprotonated silica mesopores, while the transition region is negligible in fully protonated ones. In the adsorption region, strong surface hydrogen bonding and a high degree of counterion hydration collectively hinder water mobility. Even without surface hydrogen bonding, persistent ion hydration impedes water flow, leading to the transition region in fully deprotonated silica mesopores and higher viscosity of brine (with 10 wt % NaCl) in the bulk region. This work elucidates the collective effects of surface chemistry and interfacial water structures on brine flow behaviors in silica mesopores from molecular perspectives.
在这项工作中,我们进行了分子动力学模拟,以研究典型储层条件(323 K和20 MPa)下二氧化硅介孔中压力驱动的盐水流动。虽然表面抗衡离子在完全去质子化的二氧化硅表面附近强烈聚集,但由于氢键、抗衡离子水合作用和排除体积效应,水形成了多层结构。在完全去质子化的二氧化硅介孔中,盐水流动行为表现出吸附、过渡和类似本体的区域,而在完全质子化的介孔中过渡区域可忽略不计。在吸附区域,强烈的表面氢键和高度的抗衡离子水合作用共同阻碍了水的流动性。即使没有表面氢键,持久的离子水合作用也会阻碍水流,导致在完全去质子化的二氧化硅介孔中出现过渡区域,并使本体区域中盐水(含10 wt% NaCl)的粘度更高。这项工作从分子角度阐明了表面化学和界面水结构对二氧化硅介孔中盐水流动行为的综合影响。