Xie Minjunshi, Zhang Mingshan, Jin Zhehui
School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
Langmuir. 2024 Mar 12;40(10):5369-5377. doi: 10.1021/acs.langmuir.3c03831. Epub 2024 Feb 28.
Large-scale underground hydrogen storage (UHS) plays a vital role in energy transition. H-brine interfacial tension (IFT) is a crucial parameter in structural trapping in underground geological locations and gas-water two-phase flow in subsurface porous media. On the other hand, cushion gas, such as CO, is often co-injected with H to retain reservoir pressure. Therefore, it is imperative to accurately predict the (H + CO)-water/brine IFT under UHS conditions. While there have been a number of experimental measurements on H-water/brine and (H + CO)-water/brine IFT, an accurate and efficient (H + CO)-water/brine IFT model under UHS conditions is still lacking. In this work, we use molecular dynamics (MD) simulations to generate an extensive (H + CO)-water/brine IFT databank (840 data points) over a wide range of temperature (from 298 to 373 K), pressure (from 50 to 400 bar), gas composition, and brine salinity (up to 3.15 mol/kg) for typical UHS conditions, which is used to develop an accurate and efficient machine learning (ML)-based IFT equation. Our ML-based IFT equation is validated by comparing to available experimental data and other IFT equations for various systems (H-brine/water, CO-brine/water, and (H + CO)-brine/water), rendering generally good performance (with = 0.902 against 601 experimental data points). The developed ML-based IFT equation can be readily applied and implemented in reservoir simulations and other UHS applications.
大规模地下储氢(UHS)在能源转型中起着至关重要的作用。氢-盐水界面张力(IFT)是地下地质场所结构捕集以及地下多孔介质中气-水两相流中的一个关键参数。另一方面,诸如一氧化碳之类的缓冲气体会经常与氢气一起注入以维持储层压力。因此,准确预测超高压储氢条件下(氢气+一氧化碳)-水/盐水的界面张力势在必行。虽然已经有许多关于氢气-水/盐水以及(氢气+一氧化碳)-水/盐水界面张力的实验测量,但仍缺乏一个在超高压储氢条件下准确且高效的(氢气+一氧化碳)-水/盐水界面张力模型。在这项工作中,我们使用分子动力学(MD)模拟,在典型的超高压储氢条件下,针对广泛的温度范围(从298到373K)、压力范围(从50到400巴)、气体组成以及盐水盐度(高达3.15摩尔/千克)生成了一个广泛的(氢气+一氧化碳)-水/盐水界面张力数据库(840个数据点),该数据库用于开发一个准确且高效的基于机器学习(ML)的界面张力方程。我们基于机器学习的界面张力方程通过与各种系统(氢气-盐水/水、一氧化碳-盐水/水以及(氢气+一氧化碳)-盐水/水)的现有实验数据和其他界面张力方程进行比较来验证,总体表现良好(与601个实验数据点相比,R² = 0.902)。所开发的基于机器学习的界面张力方程可以很容易地应用于油藏模拟和其他超高压储氢应用中。