Biophysics Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, United States.
Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States.
J Phys Chem B. 2023 Sep 14;127(36):7694-7707. doi: 10.1021/acs.jpcb.3c03776. Epub 2023 Sep 5.
Biomolecular condensates are membraneless cellular compartments generated by phase separation that regulate a broad variety of cellular functions by enriching some biomolecules while excluding others. Live-cell single particle tracking of individual fluorophore-labeled condensate components has provided insights into a condensate's mesoscopic organization and biological functions, such as revealing the recruitment, translation, and decay of RNAs within ribonucleoprotein (RNP) granules. Specifically, during dual-color tracking, one imaging channel provides a time series of individual biomolecule locations, while the other channel monitors the location of the condensate relative to these molecules. Therefore, an accurate assessment of a condensate's boundary is critical for combined live-cell single particle-condensate tracking. Despite its importance, a quantitative benchmarking and objective comparison of the various available boundary detection methods is missing due to the lack of an absolute ground truth for condensate images. Here, we use synthetic data of defined ground truth to generate noise-overlaid images of condensates with realistic phase separation parameters to benchmark the most commonly used methods for condensate boundary detection, including an emerging machine-learning method. We find that it is critical to carefully choose an optimal boundary detection method for a given dataset to obtain accurate measurements of single particle-condensate interactions. The criteria proposed in this study to guide the selection of an optimal boundary detection method can be broadly applied to imaging-based studies of condensates.
生物分子凝聚物是通过相分离产生的无膜细胞区室,通过富集某些生物分子而排除其他生物分子来调节广泛的细胞功能。对单个荧光标记的凝聚物成分的活细胞单颗粒跟踪为凝聚物的介观组织和生物学功能提供了深入的了解,例如揭示了核糖核蛋白 (RNP) 颗粒内 RNA 的募集、翻译和降解。具体来说,在双色跟踪中,一个成像通道提供单个生物分子位置的时间序列,而另一个通道监测相对于这些分子的凝聚物的位置。因此,准确评估凝聚物的边界对于活细胞单颗粒-凝聚物跟踪的组合至关重要。尽管如此,由于缺乏凝聚物图像的绝对基准,缺乏对各种可用边界检测方法的定量基准测试和客观比较。在这里,我们使用定义的地面实况的合成数据来生成具有现实相分离参数的凝聚物的噪声叠加图像,以基准测试最常用的凝聚物边界检测方法,包括一种新兴的机器学习方法。我们发现,对于给定的数据集,仔细选择最佳的边界检测方法对于获得单颗粒-凝聚物相互作用的准确测量至关重要。本研究提出的指导最佳边界检测方法选择的标准可以广泛应用于基于成像的凝聚物研究。