Suppr超能文献

水热合成磁性双功能纳米复合材料(FeO/ZnO)对结晶紫染料的光催化降解增强及高性能电化学超级电容器应用

Enhanced photocatalytic degradation of crystal violet dye and high-performance electrochemical supercapacitor applications of hydrothermally synthesised magnetic bifunctional nanocomposite (FeO/ZnO).

作者信息

Bhat Aabid Hussain, Chopan Nisar Ahmad, Chisti Hamida-Tun-Nisa

机构信息

Department of Chemistry, National Institute of Technology Srinagar, J&K, (190006), India.

出版信息

Nanotechnology. 2023 Sep 25;34(49). doi: 10.1088/1361-6528/acf6c4.

Abstract

The present investigation employed a facile hydrothermal approach for the fabrication of FeO/ZnO dual-functional magnetic nanocomposite. Supercapacitor and visible-light-driven photocatalytic applications of the material were explored. X-ray diffraction, Fourier transform infrared spectra, ultraviolet-visible diffuse reflectance spectra (UV-vis/DRS), field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy, and vibrating sample magnetometer were used to analyse the nanocomposite's structural, morphological, optical, and magnetic properties. The FE-SEM analysis demonstrated that the surface morphology of FeO, ZnO, and the FeO/ZnO nanocomposite consisted of nanoparticles, nanoflakes, and nanoparticles adhered to the nanoflakes, respectively. The maximum specific capacitance of the electrode based on the FeO/ZnO nanocomposite was measured to be 736.36 Fgat a scan rate of 5 mVs. The electrode also demonstrated remarkable cycling stability, retaining 86.5% of its capacitance even after 3000 cycles. The FeO/ZnO nanocomposite was found to have an optical bandgap of 2.7 eV, an average particle size of 22.5 nm, and a saturation magnetization of 68.7 emu g. The photocatalysis experiment was conducted using the optimised settings, which included a pH of 7.0, a dye concentration of 30 mg l, a catalyst dose of 1 g l, and a contact time of 120 min. The FeO/ZnO nanocomposite exhibited a notable degradation efficiency towards crystal violet dye upon exposure to visible light, achieving a degradation efficiency of 96.9%. This performance surpassed that of pure ZnO, which attained a degradation efficiency of 70.2%. The nanocomposite exhibited a rate constant of 2.80 × 10min, which was found to be notably higher than that of pure ZnO (0.8 × 10min), as determined through modelling (pseudo-first order linear fit). The radical scavenger experiments indicated that the superoxide radicals and hydroxyl radicals are the primary reactive species. The FeO/ZnO photocatalyst can be effectively isolated using a bar magnet. Remarkably, the photocatalytic efficiency of the material remained almost entirely intact even after undergoing four cycles of recycling. In addition, this research opens up exciting new possibilities for use in fields like energy storage and pollution control.

摘要

本研究采用简便的水热法制备了FeO/ZnO双功能磁性纳米复合材料。探索了该材料在超级电容器和可见光驱动光催化方面的应用。利用X射线衍射、傅里叶变换红外光谱、紫外可见漫反射光谱(UV-vis/DRS)、场发射扫描电子显微镜(FE-SEM)、能量色散X射线光谱和振动样品磁强计对纳米复合材料的结构、形态、光学和磁性进行了分析。FE-SEM分析表明,FeO、ZnO和FeO/ZnO纳米复合材料的表面形态分别由纳米颗粒、纳米薄片以及附着在纳米薄片上的纳米颗粒组成。基于FeO/ZnO纳米复合材料的电极在扫描速率为5 mV/s时测得的最大比电容为736.36 F/g。该电极还表现出显著的循环稳定性,即使在3000次循环后仍保留其电容的86.5%。发现FeO/ZnO纳米复合材料的光学带隙为2.7 eV,平均粒径为22.5 nm,饱和磁化强度为68.7 emu/g。光催化实验在优化条件下进行,包括pH值为7.0、染料浓度为30 mg/L、催化剂剂量为1 g/L以及接触时间为120 min。FeO/ZnO纳米复合材料在可见光照射下对结晶紫染料表现出显著的降解效率,降解效率达到96.9%。该性能超过了纯ZnO,纯ZnO的降解效率为70.2%。通过建模(伪一级线性拟合)确定,纳米复合材料的速率常数为2.80×10⁻² min⁻¹,明显高于纯ZnO(0.8×10⁻² min⁻¹)。自由基清除实验表明,超氧自由基和羟基自由基是主要的活性物种。FeO/ZnO光催化剂可用条形磁铁有效分离。值得注意的是,该材料即使经过四个循环回收,其光催化效率几乎完全保持不变。此外,这项研究为储能和污染控制等领域开辟了令人兴奋的新可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验