Suppr超能文献

解析牙本质-牙釉质交界处的载荷衰减机制:黏弹性本构模型的启示。

Deciphering load attenuation mechanisms of the dentin-enamel junction: Insights from a viscoelastic constitutive model.

机构信息

Department of Conservative Dentistry, Division of Aesthetic Dentistry and Clinical Cariology, Showa University Graduate School of Dentistry, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan.

Department of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.

出版信息

Acta Biomater. 2023 Nov;171:193-201. doi: 10.1016/j.actbio.2023.08.050. Epub 2023 Sep 3.

Abstract

A considerable material discontinuity between the enamel and dentin might jeopardize the tooth's mechanical durability over time without the attenuation of the dentin-enamel junction (DEJ). However, the critical loading transmission mechanism at the DEJ remains understudied. This study aimed to define the extent and effective width of the DEJ, along with its mechanical competence. The presence of DEJ interphase layer was identified using a motif analysis based on the ion beam-transmission electron microscopy coupled with nanoindentation modulus mapping. For each region, nanoindentation load-displacement curves were recorded and mathematically analyzed using an appropriate viscoelastic constitutive model. The time-course of indenter penetration (creep) behavior of the tooth tissues can be mathematically approximated by the Kelvin-Voigt model in series, which determined the visco-contribution to the overall mechanical responses. Therefore, the elastic-plastic contribution can be distinguished from the overall mechanical responses of the tooth after subtracting the visco-contributions. During the loading period, the enamel behavior was dominated by elastic-plastic responses, while both the dentin and DEJ showed pronounced viscoelastic responses. The instantaneous modulus of the DEJ, which was measured by eliminating viscoelastic behavior from the raw load-displacement curve, was almost double that of the dentin. The DEJ was stiffer than the dentin, but it exhibited large viscoelastic motion even at the initial loading stage. This study revealed that the load attenuation competence of the DEJ, which involves extra energy expenditure, is mainly associated with its viscoelasticity. The mathematical analysis proposed here, performed on the nanoindentation creep behavior, could potentially augment the existing knowledge on hard-tissue biomechanics. STATEMENT OF SIGNIFICANCE: In this study, we undertake a rigorous mechanical characterization of the dentin-enamel junction (DEJ) using an advanced nanoindentation technique coupled with a pertinent viscoelastic constitutive model. Our approach unveils the substantial viscoelastic contribution of the DEJ during the initial indentation loading phase and offers an elaborate delineation of the DEJ interphase layer through sophisticated image analysis. These insights significantly augment our understanding of tooth durability. Importantly, our innovative mathematical analysis of creep behavior introduces a novel approach with profound implications for future research in the expansive field of hard-tissue biomechanics. The pioneering methodologies and findings presented in this work hold substantial potential to invigorate progress in biomaterials research and fuel further explorations into the functionality of biological tissues.

摘要

牙釉质和牙本质之间存在相当大的材料不连续性,如果牙本质-釉质交界处(DEJ)没有减弱,可能会随着时间的推移危及牙齿的机械耐久性。然而,DEJ 的关键载荷传递机制仍在研究之中。本研究旨在确定 DEJ 的范围和有效宽度及其机械性能。使用基于离子束-透射电子显微镜结合纳米压痕模量映射的基序分析来识别 DEJ 界面层的存在。对于每个区域,记录纳米压痕载荷-位移曲线,并使用适当的粘弹性本构模型对其进行数学分析。牙齿组织压入(蠕变)行为的时间历程可以通过 Kelvin-Voigt 模型的串联数学近似来近似,该模型确定了对整体力学响应的粘弹性贡献。因此,通过减去粘弹性贡献,可以从牙齿的整体力学响应中区分出弹塑性贡献。在加载期间,牙釉质的行为主要由弹塑性响应决定,而牙本质和 DEJ 都表现出明显的粘弹性响应。通过从原始载荷-位移曲线中消除粘弹性行为来测量 DEJ 的瞬时模量,几乎是牙本质的两倍。DEJ 比牙本质硬,但即使在初始加载阶段,它也表现出较大的粘弹性运动。本研究表明,DEJ 的载荷衰减能力,涉及额外的能量消耗,主要与其粘弹性有关。这里提出的数学分析,是对纳米压痕蠕变行为进行的,可以补充现有的硬组织生物力学知识。意义声明:在这项研究中,我们使用先进的纳米压痕技术结合相关的粘弹性本构模型对牙本质-釉质交界处(DEJ)进行了严格的机械表征。我们的方法揭示了 DEJ 在初始压入加载阶段的大量粘弹性贡献,并通过复杂的图像分析提供了对 DEJ 界面层的详细描述。这些见解极大地提高了我们对牙齿耐久性的理解。重要的是,我们对蠕变行为的创新数学分析引入了一种新方法,对未来硬组织生物力学领域的研究具有深远的意义。本工作中提出的开创性方法和发现具有很大的潜力,可以促进生物材料研究的进展,并推动对生物组织功能的进一步探索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验