Gangareddy Jagannath, Rudra Pratyasha, Chirumamilla Manohar, Ganisetti Sudheer, Kasimuthumaniyan Subramanian, Sahoo Sourav, Jayanthi K, Rathod Jagannath, Soma Venugopal Rao, Das Subrata, Gosvami Nitya Nand, Krishnan N M Anoop, Pedersen Kjeld, Mondal Swastik, Ghosh Srabanti, Allu Amarnath R
CSIR-Central Glass and Ceramic Research Institute, 196 Raja S C Mullick Road, Kolkata, 700 032, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Small. 2024 Jan;20(1):e2303688. doi: 10.1002/smll.202303688. Epub 2023 Sep 5.
Metal nanoparticles (MNPs) are synthesized using various techniques on diverse substrates that significantly impact their properties. However, among the substrate materials investigated, the major challenge is the stability of MNPs due to their poor adhesion to the substrate. Herein, it is demonstrated how a newly developed H-glass can concurrently stabilize plasmonic gold nanoislands (GNIs) and offer multifunctional applications. The GNIs on the H-glass are synthesized using a simple yet, robust thermal dewetting process. The H-glass embedded with GNIs demonstrates versatility in its applications, such as i) acting as a room temperature chemiresistive gas sensor (70% response for NO gas); ii) serving as substrates for surface-enhanced Raman spectroscopy for the identifications of Nile blue (dye) and picric acid (explosive) analytes down to nanomolar concentrations with enhancement factors of 4.8 × 10 and 6.1 × 10 , respectively; and iii) functioning as a nonlinear optical saturable absorber with a saturation intensity of 18.36 × 10 W m at 600 nm, and the performance characteristics are on par with those of materials reported in the existing literature. This work establishes a facile strategy to develop advanced materials by depositing metal nanoislands on glass for various functional applications.
金属纳米颗粒(MNPs)是通过各种技术在不同的基底上合成的,这些基底会显著影响其性能。然而,在所研究的基底材料中,主要挑战是MNPs的稳定性,因为它们与基底的附着力较差。在此,展示了一种新开发的H玻璃如何能够同时稳定等离子体金纳米岛(GNIs)并提供多功能应用。H玻璃上的GNIs是使用一种简单而稳健的热去湿工艺合成的。嵌入GNIs的H玻璃在其应用中表现出多功能性,例如:i)用作室温化学电阻气体传感器(对NO气体的响应率为70%);ii)作为表面增强拉曼光谱的基底,用于识别尼罗蓝(染料)和苦味酸(炸药)分析物,检测限低至纳摩尔浓度,增强因子分别为4.8×10和6.1×10;iii)作为非线性光学饱和吸收体,在600nm处的饱和强度为18.36×10W m,其性能特征与现有文献中报道的材料相当。这项工作建立了一种简便的策略,通过在玻璃上沉积金属纳米岛来开发用于各种功能应用的先进材料。