Suppr超能文献

利用无人机多光谱影像对湿地松进行多时期表型选择。

Phenomic selection in slash pine multi-temporally using UAV-multispectral imagery.

作者信息

Li Yanjie, Yang Xinyu, Tong Long, Wang Lingling, Xue Liang, Luan Qifu, Jiang Jingmin

机构信息

State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.

Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Hangzhou, Zhejiang, China.

出版信息

Front Plant Sci. 2023 Aug 21;14:1156430. doi: 10.3389/fpls.2023.1156430. eCollection 2023.

Abstract

Genomic selection (GS) is an option for plant domestication that offers high efficiency in improving genetics. However, GS is often not feasible for long-lived tree species with large and complex genomes. In this paper, we investigated UAV multispectral imagery in time series to evaluate genetic variation in tree growth and developed a new predictive approach that is independent of sequencing or pedigrees based on multispectral imagery plus vegetation indices (VIs) for slash pine. Results show that temporal factors have a strong influence on the of tree growth traits. High genetic correlations were found in most months, and genetic gain also showed a slight influence on the time series. Using a consistent ranking of family breeding values, optimal slash pine families were selected, obtaining a promising and reliable predictive ability based on multispectral+VIs (MV) alone or on the combination of pedigree and MV. The highest predictive value, ranging from 0.52 to 0.56, was found in July. The methods described in this paper provide new approaches for phenotypic selection (PS) using high-throughput multispectral unmanned aerial vehicle (UAV) technology, which could potentially be used to reduce the generation time for conifer species and increase the genetic granularity independent of sequencing or pedigrees.

摘要

基因组选择(GS)是植物驯化的一种选择,在改善遗传学方面具有高效率。然而,对于具有大而复杂基因组的长寿树种,GS通常不可行。在本文中,我们研究了无人机多光谱图像的时间序列,以评估树木生长的遗传变异,并开发了一种新的预测方法,该方法基于多光谱图像加上植被指数(VIs),用于湿地松,独立于测序或系谱。结果表明,时间因素对树木生长性状有很强的影响。在大多数月份中发现了高遗传相关性,遗传增益对时间序列也有轻微影响。使用一致的家系育种值排名,选择了最佳的湿地松家系,仅基于多光谱+VIs(MV)或系谱与MV的组合获得了有前景且可靠的预测能力。在7月发现了最高的预测值,范围为0.52至0.56。本文所述方法为使用高通量多光谱无人机(UAV)技术进行表型选择(PS)提供了新方法,这可能潜在地用于减少针叶树种的世代时间,并增加独立于测序或系谱的遗传粒度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6738/10475579/b74429e3d188/fpls-14-1156430-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验