Suppr超能文献

分割中的阈值处理如何影响线性模型的回归性能。

How thresholding in segmentation affects the regression performance of the linear model.

机构信息

Department of Linguistics and Cognitive Sciences, University of Potsdam, Potsdam,

出版信息

JASA Express Lett. 2023 Sep 1;3(9). doi: 10.1121/10.0020815.

Abstract

Evaluating any model underlying the control of speech requires segmenting the continuous flow of speech effectors into sequences of movements. A virtually universal practice in this segmentation is to use a velocity-based threshold which identifies a movement onset or offset as the time at which the velocity of the relevant effector breaches some threshold percentage of the maximal velocity. Depending on the threshold choice, more or less of the movement's trajectory is left in for model regression. This paper makes explicit how the choice of this threshold modulates the regression performance of a dynamical model hypothesized to govern speech movements.

摘要

评估控制言语的任何模型都需要将言语效应器的连续运动流分割成运动序列。在这种分割中,一种几乎普遍的做法是使用基于速度的阈值,该阈值将运动的起始或结束时间定义为相关效应器的速度突破最大速度的某个阈值百分比的时间。根据阈值的选择,模型回归中会包含更多或更少的运动轨迹。本文明确说明了这个阈值的选择如何调节假设控制言语运动的动态模型的回归性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验