Suppr超能文献

发现语音手势的动态规律。

Discovering Dynamical Laws for Speech Gestures.

作者信息

Kirkham Sam

机构信息

Department of Linguistics and English Language, Lancaster University.

出版信息

Cogn Sci. 2025 May;49(5):e70064. doi: 10.1111/cogs.70064.

Abstract

A fundamental challenge in the cognitive sciences is discovering the dynamics that govern behavior. Take the example of spoken language, which is characterized by a highly variable and complex set of physical movements that map onto the small set of cognitive units that comprise language. What are the fundamental dynamical principles behind the movements that structure speech production? In this study, we discover models in the form of symbolic equations that govern articulatory gestures during speech. A sparse symbolic regression algorithm is used to discover models from kinematic data on the tongue and lips. We explore these candidate models using analytical techniques and numerical simulations and find that a second-order linear model achieves high levels of accuracy, but a nonlinear force is required to properly model articulatory dynamics in approximately one third of cases. This supports the proposal that an autonomous, nonlinear, second-order differential equation is a viable dynamical law for articulatory gestures in speech. We conclude by identifying future opportunities and obstacles in data-driven model discovery and outline prospects for discovering the dynamical principles that govern language, brain, and behavior.

摘要

认知科学中的一个基本挑战是发现支配行为的动态过程。以口语为例,它的特点是一系列高度可变且复杂的身体动作,这些动作映射到构成语言的一小套认知单元上。构成言语产生的动作背后的基本动态原理是什么?在本研究中,我们发现了以符号方程形式存在的模型,这些模型支配着言语过程中的发音手势。一种稀疏符号回归算法被用于从舌头和嘴唇的运动学数据中发现模型。我们使用分析技术和数值模拟来探索这些候选模型,发现二阶线性模型具有较高的准确性,但在大约三分之一的情况下,需要一个非线性力来正确模拟发音动态。这支持了这样一种观点,即一个自主的、非线性的二阶微分方程是言语中发音手势的一个可行的动态定律。我们通过识别数据驱动模型发现中的未来机遇和障碍来得出结论,并概述发现支配语言、大脑和行为的动态原理的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33f1/12046378/398758a9b62e/COGS-49-e70064-g011.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验