Ju Zhengyu, Zheng Tianrui, Calderon John, Checko Shane, Zhang Bowen, Yu Guihua
Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
Nano Lett. 2023 Sep 27;23(18):8787-8793. doi: 10.1021/acs.nanolett.3c03040. Epub 2023 Sep 7.
Over the past few years, lithium-ion batteries have been extensively adopted in electric transportation. Meanwhile, the energy density of lithium-ion battery packs has been significantly improved, thanks to the development of materials science and packing technology. Despite recent progress in electric vehicle cruise ranges, the increase in battery charging rates remains a pivotal problem in electrodes with commercial-level mass loadings. Herein, we develop a scalable strategy that incorporates bidirectional freeze-casting into the conventional tape-casting method to fabricate energy-dense, fast-charging battery electrodes with aligned structures. The vertically lamellar architectures in bidirectional freeze-cast electrodes can be roll-to-roll calendered, forming the tilted yet aligned channels. These channels enable directional pathways for efficient lithium-ion transport in electrolyte-filled pores and thus realize fast-charging capabilities. In this work, we not only provide a simple yet controllable approach for building the aligned electrode architectures for fast charging but also highlight the significance of scalability in electrode fabrication considerations.
在过去几年中,锂离子电池已在电动交通领域得到广泛应用。与此同时,得益于材料科学和封装技术的发展,锂离子电池组的能量密度有了显著提高。尽管电动汽车的续航里程最近有所进步,但在具有商业级质量负载的电极中,电池充电速率的提高仍然是一个关键问题。在此,我们开发了一种可扩展的策略,将双向冷冻铸造纳入传统的流延铸造方法中,以制造具有对齐结构的高能量密度、快速充电的电池电极。双向冷冻铸造电极中的垂直层状结构可以进行卷对卷压延,形成倾斜但对齐的通道。这些通道为锂离子在充满电解质的孔隙中高效传输提供了定向路径,从而实现快速充电能力。在这项工作中,我们不仅提供了一种简单且可控的方法来构建用于快速充电的对齐电极结构,还强调了在电极制造考虑中可扩展性的重要性。