Suppr超能文献

认知正常且有(或无)主观记忆问题的参与者中学习曲线与阿尔茨海默病生物标志物之间的关系。

The relationship between learning slopes and Alzheimer's Disease biomarkers in cognitively unimpaired participants with and without subjective memory concerns.

机构信息

Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.

Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.

出版信息

J Clin Exp Neuropsychol. 2023 Sep;45(7):727-743. doi: 10.1080/13803395.2023.2254444. Epub 2023 Sep 7.

Abstract

OBJECTIVE

Learning slopes represent serial acquisition of information during list-learning tasks. Although several calculations for learning slopes exist, the Learning Ratio (LR) has recently demonstrated the highest sensitivity toward changes in cognition and Alzheimer's disease (AD) biomarkers. However, investigation of learning slopes in cognitively unimpaired individuals with subjective memory concerns (SMC) has been limited. The current study examines the association of learning slopes to SMC, and the role of SMC in the relationship between learning slopes and AD biomarkers in cognitively unimpaired individuals.

METHOD

Data from 950 cognitively unimpaired participants from the Alzheimer's Disease Neuroimaging Initiative (aged 55 to 89) were used to calculate learning slope metrics. Learning slopes among those with and without SMC were compared with demographic correction, and the relationships of learning slopes with AD biomarkers of bilateral hippocampal volume and β-amyloid pathology were determined.

RESULTS

Learning slopes were consistently predictive of hippocampal atrophy and β-amyloid deposition. Results were heightened for LR relative to the other learning slopes. Additionally, interaction analyses revealed different associations between learning slopes and hippocampal volume as a function of SMC status.

CONCLUSIONS

Learning slopes appear to be sensitive to SMC and AD biomarkers, with SMC status influencing the relationship in cognitively unimpaired participants. These findings advance our knowledge of SMC, and suggest that LR - in particular - can be an important tool for the detection of AD pathology in both SMC and in AD clinical trials.

摘要

目的

学习斜率代表在列表学习任务中连续获取信息。虽然有几种学习斜率的计算方法,但学习比(LR)最近在认知变化和阿尔茨海默病(AD)生物标志物方面表现出了最高的敏感性。然而,对有主观记忆问题(SMC)但认知无障碍的个体的学习斜率的研究还很有限。本研究考察了学习斜率与 SMC 的相关性,以及 SMC 在学习斜率与认知无障碍个体的 AD 生物标志物之间的关系中的作用。

方法

使用来自阿尔茨海默病神经影像学倡议(年龄在 55 至 89 岁之间)的 950 名认知无障碍参与者的数据来计算学习斜率指标。比较了有和没有 SMC 的个体之间的学习斜率,并确定了学习斜率与双侧海马体积和β-淀粉样蛋白病理的 AD 生物标志物之间的关系。

结果

学习斜率始终可以预测海马萎缩和β-淀粉样蛋白沉积。LR 相对于其他学习斜率的结果更高。此外,交互分析显示,学习斜率与海马体积之间的关系因 SMC 状态而异。

结论

学习斜率似乎对 SMC 和 AD 生物标志物敏感,SMC 状态会影响认知无障碍参与者的关系。这些发现增进了我们对 SMC 的认识,并表明 LR——特别是——可以成为检测 SMC 和 AD 临床试验中 AD 病理的重要工具。

相似文献

引用本文的文献

本文引用的文献

2
Learning slopes in early-onset Alzheimer's disease.早发性阿尔茨海默病中的学习斜率。
Alzheimers Dement. 2023 Nov;19 Suppl 9(Suppl 9):S19-S28. doi: 10.1002/alz.13159. Epub 2023 May 27.
10
Relationship between a novel learning slope metric and Alzheimer's disease biomarkers.新型学习斜率指标与阿尔茨海默病生物标志物的关系。
Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2022 Sep;29(5):799-819. doi: 10.1080/13825585.2021.1919984. Epub 2021 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验