Subdivisión de Medicina Familiar, División de Estudios de Posgrado, Facultad de Medicina.
Centro de Investigación en Políticas, Población y Salud.
Cir Cir. 2023;91(4):550-560. doi: 10.24875/CIRU.22000318.
To apply an artificial neural networks analysis (ANN) model to identify variables that predict assigned leadership and academic success in graduates of six generations of medical school.
Analytical, retrospective, comparative study. A total of 1434 graduates participated. A questionnaire was sent to them by e-mail including a voluntary participation consent. A multivariate statistical analysis using multi-layer perceptron ANN, decision trees and driver analysis was performed.
The ANN identified seven independent variables that predicted professional success and eight for leadership in medical graduates. The decision trees identified significant differences in the variables professional performance (p = 0.000), age (p = 0.005) and continuing education activities (p = 0.034) related to professional success, and for leadership the variables gender (p = 0.000), high school grades (p = 0.042), performing clinical practice during the social service year (p = 0.002) and continuing education activities (p = 0.011).
The ANN identified the main independent predictor variables of professional success and leadership of the graduates. This study opens up two new lines of research little studied with the techniques of in the area of medicine.
应用人工神经网络分析(ANN)模型来识别变量,以预测医学院六代毕业生的领导能力和学术成功。
分析性、回顾性、比较研究。共有 1434 名毕业生参与。通过电子邮件向他们发送了一份问卷,包括自愿参与的同意书。使用多层感知器 ANN、决策树和驱动分析进行了多变量统计分析。
ANN 确定了七个独立变量,可以预测医学生的职业成功,八个独立变量可以预测领导力。决策树确定了与职业成功相关的变量,如专业表现(p = 0.000)、年龄(p = 0.005)和继续教育活动(p = 0.034)存在显著差异,而对于领导力,变量包括性别(p = 0.000)、高中成绩(p = 0.042)、在社会实践年期间进行临床实践(p = 0.002)和继续教育活动(p = 0.011)。
ANN 确定了毕业生专业成功和领导力的主要独立预测变量。这项研究为医学领域中两个很少研究的新技术开辟了两条新的研究路线。