Suppr超能文献

在线分析癫痫儿童和青少年呼出的气体,预测体内游离和总丙戊酸水平。

Prediction of systemic free and total valproic acid by off-line analysis of exhaled breath in epileptic children and adolescents.

机构信息

University Children's Hospital Basel, Basel, Switzerland.

Department of Biomedical Engineering, University of Basel, Basel, Switzerland.

出版信息

J Breath Res. 2023 Sep 19;17(4). doi: 10.1088/1752-7163/acf782.

Abstract

Therapeutic drug monitoring (TDM) of medications with a narrow therapeutic window is a common clinical practice to minimize toxic effects and maximize clinical outcomes. Routine analyses rely on the quantification of systemic blood concentrations of drugs. Alternative matrices such as exhaled breath are appealing because of their inherent non-invasive nature. This is especially the case for pediatric patients. We have recently showcased the possibility of predicting systemic concentrations of valproic acid (VPA), an anti-seizure medication by real-time breath analysis in two real clinical settings. This approach, however, comes with the limitation of the patients having to physically exhale into the mass spectrometer. This restricts the possibility of sampling from patients not capable or available to exhale into the mass spectrometer located on the hospital premises. In this work, we developed an alternative method to overcome this limitation by collecting the breath samples in customized bags and subsequently analyzing them by secondary electrospray ionization coupled to high-resolution mass spectrometry (SESI-HRMS). A total of= 40 patients (mean ± SD, 11.5 ± 3.5 y.o.) diagnosed with epilepsy and taking VPA were included in this study. The patients underwent three measurements: (i) serum concentrations of total and free VPA, (ii) real-time breath analysis and (iii) off-line analysis of exhaled breath collected in bags. The agreement between the real-time and the off-line breath analysis methods was evaluated using Lin's concordance correlation coefficient (CCC). CCC was computed for ten mass spectral predictors of VPA concentrations. Lin's CCC was >0.6 for all VPA-associated features, except for two low-signal intensity isotopic peaks. Finally, free and total serum VPA concentrations were predicted by cross validating the off-line data set. Support vector machine algorithms provided the most accurate predictions with a root mean square error of cross validation of 29.0 ± 7.4 mg land 3.9 ± 1.4 mg lfor total and free VPA (mean ± SD), respectively. As a secondary analysis, we explored whether exhaled metabolites previously associated with side-effects and response to medication could be rendered by the off-line analysis method. We found that five features associated with side effects showed a CCC > 0.6, whereas none of the drug response-associated peaks reached this cut-off. We conclude that the clinically relevant free fraction of VPA can be predicted by this combination of off-line breath collection with rapid SESI-HRMS analysis. This opens new possibilities for breath based TDM in clinical settings.

摘要

治疗药物监测(TDM)是一种常见的临床实践,用于将药物浓度控制在治疗窗内,以最小化毒性作用并最大程度地提高临床效果。常规分析依赖于对药物系统血液浓度的定量检测。呼出的气体等替代基质由于其固有的非侵入性而受到关注。对于儿科患者来说尤其如此。我们最近在两个真实的临床环境中展示了通过实时呼吸分析来预测丙戊酸(VPA)的全身浓度的可能性,VPA 是一种抗癫痫药物。然而,这种方法存在局限性,即患者必须将气体物理呼出到质谱仪中。这限制了无法或无法将气体呼出到位于医院内的质谱仪的患者的采样可能性。在这项工作中,我们开发了一种替代方法,通过在定制袋中收集呼吸样本,然后通过二次电喷雾电离与高分辨率质谱(SESI-HRMS)进行分析来克服这一限制。共有=40 名(平均±SD,11.5±3.5 岁)被诊断为癫痫且正在服用 VPA 的患者参与了这项研究。患者接受了三种测量:(i)血清中总 VPA 和游离 VPA 的浓度,(ii)实时呼吸分析和(iii)在袋子中收集的呼出气体的离线分析。使用 Lin 的一致性相关系数(CCC)评估实时和离线呼吸分析方法之间的一致性。为十个与 VPA 浓度相关的质谱预测因子计算了 CCC。除了两个低信号强度的同位素峰外,所有与 VPA 相关的特征的 CCC 均大于 0.6。最后,通过交叉验证离线数据集来预测游离和总血清 VPA 浓度。支持向量机算法提供了最准确的预测,交叉验证的均方根误差为 29.0±7.4mg/L 和 3.9±1.4mg/L,分别用于总 VPA 和游离 VPA(均值±SD)。作为二次分析,我们探讨了先前与副作用和药物反应相关的呼出代谢物是否可以通过离线分析方法得到。我们发现,与副作用相关的五个特征的 CCC 大于 0.6,而与药物反应相关的峰均未达到该截止值。我们得出的结论是,通过离线呼吸采集与快速 SESI-HRMS 分析相结合,可以预测 VPA 的临床相关游离分数。这为临床环境中的基于呼吸的 TDM 开辟了新的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验