Suppr超能文献

卡马西平与丙戊酸单药及联合治疗个体化剂量方案的可预测性。

Predictability of individualized dosage regimens of carbamazepine and valproate mono- and combination therapy.

机构信息

Laboratory of Mathematical Modeling, The Research Institute of Physical-Chemical Medicine, Moscow, Russia.

出版信息

J Clin Pharm Ther. 2011 Oct;36(5):625-36. doi: 10.1111/j.1365-2710.2010.01215.x. Epub 2010 Nov 10.

Abstract

WHAT IS KNOWN AND OBJECTIVE

Many investigators agree that appropriate rational utilization of therapeutic drug monitoring (TDM) with Bayesian feedback dosage adjustment facilitates epilepsy treatment with carbamazepine (CBZ) and/or valproate (VPA) by increasing the seizure control and safety, as well as by reducing treatment costs. In previous works we have developed and used in clinical practice population pharmacokinetic (PK) models of different dosage forms for VPA and post-induction CBZ behaviour, as well as for combined therapy with CBZ plus another 'old' antiepileptic drug (AED). An important step of external validation is to evaluate how well a procedure of Bayesian individualizing AED dosage regimens based on a proposed population PK model and sparse TDM data 'works', and how helpful it is in real practical clinical settings. The aim of this study was to evaluate the predictability of individualized dosage regimens for monotherapy with CBZ in the post-induction period or with VPA, as well as for CBZ and VPA given as combination therapy based on TDM data of epileptic patients and the earlier developed population models.

METHODS

Four groups of TDM data were analysed using the USC*PACK software for PK/PD analysis: 556 predictions for adult epileptic patients on CBZ monotherapy, 662 predictions for VPA monotherapy, 402 predictions of CBZ serum levels and 430 predictions of VPA serum levels for adult epileptic patients on CBZ+VPA combination therapy. Statistical characteristics of the prediction errors (PE) and weighted PE were used to estimate bias and precision of predictions. Intraindividual and interoccasional variability of predictions were also estimated.

RESULTS AND DISCUSSION

This study demonstrated that in most cases of CBZ and VPA monotherapy and combination therapy, predictions of future AED concentrations based on the earlier developed population PK models, TDM data and patient-specific maximum a posteriori probability Bayesian posterior parameter values provided clinically acceptable estimates. Statistical analysis of the residuals demonstrated that the distributions of residual and weighted residual were close to the normal distribution (Kolmogorov-Smirnov test, P > 0·05) and their mean values did not differ statistically significant from zero (no statistically significant bias, P > 0·05) for all groups of predictions. The observed decreased quality of predictions of VPA concentrations during VPA+CBZ combination therapy, especially when CBZ dosages were changed, might well be explained by their PK interactions. For all groups, in linear regression analysis, the observed trend of decreasing of the prediction quality over various future prediction time horizons was considered statistically significant (P < 0·05). Prediction of serum levels further in future was less precise than those closer to the present for a 1·5- to 3·5-year observation period. No bias in predictions was associated with the time horizons.

WHAT IS NEW AND CONCLUSION

Our validation results suggest good predictive performance of the population models developed earlier, and quite acceptable predictions of future AED serum levels for individualized dosage regimens of CBZ and VPA therapy in real clinical settings.

摘要

已知和目的

许多研究人员认为,通过贝叶斯反馈剂量调整来合理利用治疗药物监测(TDM)有助于控制癫痫发作并提高安全性,同时降低治疗成本,从而改善卡马西平(CBZ)和/或丙戊酸(VPA)的治疗效果。在之前的工作中,我们已经开发并在临床实践中使用了 VPA 和诱导后 CBZ 行为的不同剂型的群体药代动力学(PK)模型,以及 CBZ 与另一种“旧”抗癫痫药物(AED)联合治疗的 PK 模型。外部验证的一个重要步骤是评估基于提出的群体 PK 模型和稀疏 TDM 数据的 AED 剂量个体化方案的性能如何,以及它在实际临床环境中有多么有用。本研究的目的是评估在诱导后时期使用 CBZ 单药治疗、VPA 单药治疗以及 CBZ 和 VPA 联合治疗时,基于 TDM 数据和之前开发的群体模型对个体化剂量方案的预测能力。

方法

使用 USC*PACK 软件进行了四组 TDM 数据分析:556 例接受 CBZ 单药治疗的成年癫痫患者的预测值,662 例接受 VPA 单药治疗的预测值,402 例 CBZ 血清水平预测值和 430 例接受 CBZ+VPA 联合治疗的成年癫痫患者的 VPA 血清水平预测值。使用预测误差(PE)和加权 PE 的统计特征来估计预测的偏差和精度。还估计了预测的个体内和个体间变异性。

结果和讨论

本研究表明,在大多数情况下,基于先前开发的群体 PK 模型、TDM 数据和患者最大后验概率贝叶斯后验参数值,对未来 AED 浓度的预测可以提供临床可接受的估计值。对残差的统计分析表明,残差和加权残差的分布接近正态分布(Kolmogorov-Smirnov 检验,P>0.05),其平均值与零无统计学差异(无统计学显著偏差,P>0.05),所有预测组均如此。在 VPA+CBZ 联合治疗期间,VPA 浓度预测质量的观察到的降低,尤其是在改变 CBZ 剂量时,可能很好地解释为它们的 PK 相互作用。对于所有组,在线性回归分析中,随着未来预测时间的推移,预测质量逐渐降低的趋势被认为具有统计学意义(P<0.05)。对未来更远时间点的血清水平的预测精度不如对目前时间点的预测精度高。在 1.5 到 3.5 年的观察期内,预测的偏倚与时间范围无关。

新内容和结论

我们的验证结果表明,先前开发的群体模型具有良好的预测性能,并且在真实临床环境中对 CBZ 和 VPA 治疗的个体化剂量方案的未来 AED 血清水平具有相当可接受的预测能力。

相似文献

1
Predictability of individualized dosage regimens of carbamazepine and valproate mono- and combination therapy.
J Clin Pharm Ther. 2011 Oct;36(5):625-36. doi: 10.1111/j.1365-2710.2010.01215.x. Epub 2010 Nov 10.
2
Population pharmacokinetic modelling of carbamazepine in epileptic elderly patients: implications for dosage.
J Clin Pharm Ther. 2006 Jun;31(3):211-21. doi: 10.1111/j.1365-2710.2006.00717.x.
7
Lack of interaction of gabapentin with carbamazepine or valproate.
Epilepsia. 1994 Jan-Feb;35(1):155-61. doi: 10.1111/j.1528-1157.1994.tb02926.x.
8
Antiepileptic drug utilization in Bangladesh: experience from Dhaka Medical College Hospital.
BMC Res Notes. 2013 Nov 18;6:473. doi: 10.1186/1756-0500-6-473.

引用本文的文献

1
Assessment of adherence to carbamazepine using plasma and saliva samples, a study from Jordan.
Heliyon. 2024 Feb 23;10(5):e26736. doi: 10.1016/j.heliyon.2024.e26736. eCollection 2024 Mar 15.
4
A Critique of Pharmacokinetic Calculators for Drug Dosing Individualization.
Eur J Drug Metab Pharmacokinet. 2020 Apr;45(2):157-162. doi: 10.1007/s13318-019-00589-1.
6
Pharmacokinetic interactions and dosing rationale for antiepileptic drugs in adults and children.
Br J Clin Pharmacol. 2018 Jan;84(1):97-111. doi: 10.1111/bcp.13400. Epub 2017 Nov 7.

本文引用的文献

1
Population pharmacokinetic modelling of carbamazepine in epileptic elderly patients: implications for dosage.
J Clin Pharm Ther. 2006 Jun;31(3):211-21. doi: 10.1111/j.1365-2710.2006.00717.x.
2
Therapeutic drug monitoring of old and newer anti-epileptic drugs.
Clin Chem Lab Med. 2004;42(11):1228-55. doi: 10.1515/CCLM.2004.245.
3
A Bayesian approach to tracking patients having changing pharmacokinetic parameters.
J Pharmacokinet Pharmacodyn. 2004 Feb;31(1):75-107. doi: 10.1023/b:jopa.0000029490.76908.0c.
5
Appropriateness of serum level determinations of antiepileptic drugs.
Swiss Med Wkly. 2003 Nov 22;133(43-44):591-7. doi: 10.4414/smw.2003.10435.
6
The importance of drug interactions in epilepsy therapy.
Epilepsia. 2002 Apr;43(4):365-85. doi: 10.1046/j.1528-1157.2002.13001.x.
7
Pharmacokinetics of the new antiepileptic drugs.
Am J Manag Care. 2001 Jul;7(7 Suppl):S215-20.
9
Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed.
Epilepsia. 2000 Nov;41(11):1364-74. doi: 10.1111/j.1528-1157.2000.tb00111.x.
10
Target concentration intervention: beyond Y2K.
Br J Clin Pharmacol. 1999 Jul;48(1):9-13. doi: 10.1046/j.1365-2125.1999.00971.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验