Suppr超能文献

通过代谢工程改造集胞藻 7942 以增强蔗糖生物合成。

Metabolic engineering of Synechococcus elongatus 7942 for enhanced sucrose biosynthesis.

机构信息

Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.

Department of Pediatrics, University of California, San Diego, CA, 92093, USA; Department of Biology, San Diego State University, San Diego, CA, 92182, USA.

出版信息

Metab Eng. 2023 Nov;80:12-24. doi: 10.1016/j.ymben.2023.09.002. Epub 2023 Sep 9.

Abstract

The capability of cyanobacteria to produce sucrose from CO and light has a remarkable societal and biotechnological impact since sucrose can serve as a carbon and energy source for a variety of heterotrophic organisms and can be converted into value-added products. However, most metabolic engineering efforts have focused on understanding local pathway alterations that drive sucrose biosynthesis and secretion in cyanobacteria rather than analyzing the global flux re-routing that occurs following induction of sucrose production by salt stress. Here, we investigated global metabolic flux alterations in a sucrose-secreting (cscB-overexpressing) strain relative to its wild-type Synechococcus elongatus 7942 parental strain. We used targeted metabolomics, C metabolic flux analysis (MFA), and genome-scale modeling (GSM) as complementary approaches to elucidate differences in cellular resource allocation by quantifying metabolic profiles of three cyanobacterial cultures - wild-type S. elongatus 7942 without salt stress (WT), wild-type with salt stress (WT/NaCl), and the cscB-overexpressing strain with salt stress (cscB/NaCl) - all under photoautotrophic conditions. We quantified the substantial rewiring of metabolic fluxes in WT/NaCl and cscB/NaCl cultures relative to WT and identified a metabolic bottleneck limiting carbon fixation and sucrose biosynthesis. This bottleneck was subsequently mitigated through heterologous overexpression of glyceraldehyde-3-phosphate dehydrogenase in an engineered sucrose-secreting strain. Our study also demonstrates that combining C-MFA and GSM is a useful strategy to both extend the coverage of MFA beyond central metabolism and to improve the accuracy of flux predictions provided by GSM.

摘要

蓝藻将 CO 和光转化为蔗糖的能力具有显著的社会和生物技术影响,因为蔗糖可以作为各种异养生物的碳源和能源,并且可以转化为增值产品。然而,大多数代谢工程努力都集中在理解局部途径改变上,这些改变驱动蓝藻中的蔗糖生物合成和分泌,而不是分析盐胁迫诱导蔗糖生产后发生的全局通量重排。在这里,我们研究了蔗糖分泌(cscB 过表达)菌株相对于其野生型 Synechococcus elongatus 7942 亲本菌株的全局代谢通量改变。我们使用靶向代谢组学、C 代谢通量分析 (MFA) 和基于基因组规模的建模 (GSM) 作为互补方法,通过量化三种蓝藻培养物(无盐胁迫的野生型 S. elongatus 7942 (WT)、有盐胁迫的野生型 (WT/NaCl) 和有盐胁迫的 cscB 过表达菌株 (cscB/NaCl))的代谢谱,阐明细胞资源分配的差异——所有这些都是在光自养条件下进行的。我们量化了 WT/NaCl 和 cscB/NaCl 培养物中代谢通量的大量重排,并确定了限制碳固定和蔗糖生物合成的代谢瓶颈。通过在工程化蔗糖分泌菌株中异源过表达甘油醛-3-磷酸脱氢酶,我们缓解了这个瓶颈。我们的研究还表明,将 C-MFA 和 GSM 相结合是一种有用的策略,既可以扩展 MFA 对中心代谢的覆盖范围,又可以提高 GSM 提供的通量预测的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验