Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
Department of Pediatrics, University of California, San Diego, CA, 92093, USA; Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
Metab Eng. 2023 Nov;80:12-24. doi: 10.1016/j.ymben.2023.09.002. Epub 2023 Sep 9.
The capability of cyanobacteria to produce sucrose from CO and light has a remarkable societal and biotechnological impact since sucrose can serve as a carbon and energy source for a variety of heterotrophic organisms and can be converted into value-added products. However, most metabolic engineering efforts have focused on understanding local pathway alterations that drive sucrose biosynthesis and secretion in cyanobacteria rather than analyzing the global flux re-routing that occurs following induction of sucrose production by salt stress. Here, we investigated global metabolic flux alterations in a sucrose-secreting (cscB-overexpressing) strain relative to its wild-type Synechococcus elongatus 7942 parental strain. We used targeted metabolomics, C metabolic flux analysis (MFA), and genome-scale modeling (GSM) as complementary approaches to elucidate differences in cellular resource allocation by quantifying metabolic profiles of three cyanobacterial cultures - wild-type S. elongatus 7942 without salt stress (WT), wild-type with salt stress (WT/NaCl), and the cscB-overexpressing strain with salt stress (cscB/NaCl) - all under photoautotrophic conditions. We quantified the substantial rewiring of metabolic fluxes in WT/NaCl and cscB/NaCl cultures relative to WT and identified a metabolic bottleneck limiting carbon fixation and sucrose biosynthesis. This bottleneck was subsequently mitigated through heterologous overexpression of glyceraldehyde-3-phosphate dehydrogenase in an engineered sucrose-secreting strain. Our study also demonstrates that combining C-MFA and GSM is a useful strategy to both extend the coverage of MFA beyond central metabolism and to improve the accuracy of flux predictions provided by GSM.
蓝藻将 CO 和光转化为蔗糖的能力具有显著的社会和生物技术影响,因为蔗糖可以作为各种异养生物的碳源和能源,并且可以转化为增值产品。然而,大多数代谢工程努力都集中在理解局部途径改变上,这些改变驱动蓝藻中的蔗糖生物合成和分泌,而不是分析盐胁迫诱导蔗糖生产后发生的全局通量重排。在这里,我们研究了蔗糖分泌(cscB 过表达)菌株相对于其野生型 Synechococcus elongatus 7942 亲本菌株的全局代谢通量改变。我们使用靶向代谢组学、C 代谢通量分析 (MFA) 和基于基因组规模的建模 (GSM) 作为互补方法,通过量化三种蓝藻培养物(无盐胁迫的野生型 S. elongatus 7942 (WT)、有盐胁迫的野生型 (WT/NaCl) 和有盐胁迫的 cscB 过表达菌株 (cscB/NaCl))的代谢谱,阐明细胞资源分配的差异——所有这些都是在光自养条件下进行的。我们量化了 WT/NaCl 和 cscB/NaCl 培养物中代谢通量的大量重排,并确定了限制碳固定和蔗糖生物合成的代谢瓶颈。通过在工程化蔗糖分泌菌株中异源过表达甘油醛-3-磷酸脱氢酶,我们缓解了这个瓶颈。我们的研究还表明,将 C-MFA 和 GSM 相结合是一种有用的策略,既可以扩展 MFA 对中心代谢的覆盖范围,又可以提高 GSM 提供的通量预测的准确性。