Suppr超能文献

工程化集胞藻在光混合营养生长过程中的转录组学和代谢组学研究。

Transcriptomics and metabolomics of engineered Synechococcus elongatus during photomixotrophic growth.

机构信息

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.

Sino-French Research Institute for Ecology and Environment (ISFREE), Shandong University, Qingdao, 266237, China.

出版信息

Microb Cell Fact. 2022 Mar 5;21(1):31. doi: 10.1186/s12934-022-01760-1.

Abstract

BACKGROUND

Converting carbon dioxide (CO) into value-added chemicals using engineered cyanobacteria is a promising strategy to tackle the global warming and energy shortage issues. However, most cyanobacteria are autotrophic and use CO as a sole carbon source, which makes it hard to compete with heterotrophic hosts in either growth or productivity. One strategy to overcome this bottleneck is to introduce sugar utilization pathways to enable photomixotrophic growth with CO and sugar (e.g., glucose and xylose). Advances in engineering mixotrophic cyanobacteria have been obtained, while a systematic interrogation of these engineered strains is missing. This work aimed to fill the gap at omics level.

RESULTS

We first constructed two engineered Synechococcus elongatus YQ2-gal and YQ3-xyl capable of utilizing glucose and xylose, respectively. To investigate the metabolic mechanism, transcriptomic and metabolomic analysis were then performed in the engineered photomixotrophic strains YQ2-gal and YQ3-xyl. Transcriptome and metabolome of wild-type S. elongatus were set as baselines. Increased abundance of metabolites in glycolysis or pentose phosphate pathway indicated that efficient sugar utilization significantly enhanced carbon flux in S. elongatus as expected. However, carbon flux was redirected in strain YQ2-gal as more flowed into fatty acids biosynthesis but less into amino acids. In strain YQ3-xyl, more carbon flux was directed into synthesis of sucrose, glucosamine and acetaldehyde, while less into fatty acids and amino acids. Moreover, photosynthesis and bicarbonate transport could be affected by upregulated genes, while nitrogen transport and assimilation were regulated by less transcript abundance of related genes in strain YQ3-xyl with utilization of xylose.

CONCLUSIONS

Our work identified metabolic mechanism in engineered S. elongatus during photomixotrophic growth, where regulations of fatty acids metabolism, photosynthesis, bicarbonate transport, nitrogen assimilation and transport are dependent on different sugar utilization. Since photomixotrophic cyanobacteria is regarded as a promising cell factory for bioproduction, this comprehensive understanding of metabolic mechanism of engineered S. elongatus during photomixotrophic growth would shed light on the engineering of more efficient and controllable bioproduction systems based on this potential chassis.

摘要

背景

利用工程化蓝藻将二氧化碳(CO)转化为有价值的化学物质是解决全球变暖和能源短缺问题的一种很有前途的策略。然而,大多数蓝藻是自养的,仅将 CO 作为唯一的碳源,这使得它们在生长或生产力方面很难与异养宿主竞争。克服这一瓶颈的一种策略是引入糖利用途径,以实现 CO 和糖(例如葡萄糖和木糖)的光混合营养生长。在构建混合营养蓝藻方面已经取得了进展,然而,对这些工程菌株的系统研究还没有。这项工作旨在在组学水平上填补这一空白。

结果

我们首先构建了能够分别利用葡萄糖和木糖的两种工程化集胞藻 YQ2-gal 和 YQ3-xyl。为了研究代谢机制,然后对工程化的光混合营养菌株 YQ2-gal 和 YQ3-xyl 进行了转录组和代谢组分析。野生型集胞藻 S. elongatus 的转录组和代谢组被设置为基线。糖酵解或戊糖磷酸途径中代谢物丰度的增加表明,正如预期的那样,有效的糖利用显著增强了 S. elongatus 中的碳通量。然而,在 YQ2-gal 菌株中,碳通量更多地流向脂肪酸生物合成,而流向氨基酸的碳通量减少。在 YQ3-xyl 菌株中,更多的碳通量流向蔗糖、葡糖胺和乙醛的合成,而流向脂肪酸和氨基酸的碳通量减少。此外,光合作用和碳酸氢盐运输可能受到上调基因的影响,而氮运输和同化在 YQ3-xyl 菌株利用木糖时受到相关基因转录丰度较低的调节。

结论

我们的工作确定了工程集胞藻 S. elongatus 在光混合营养生长过程中的代谢机制,其中脂肪酸代谢、光合作用、碳酸氢盐运输、氮同化和运输的调节取决于不同的糖利用。由于光混合营养蓝藻被认为是生物生产的一种很有前途的细胞工厂,因此,对工程集胞藻 S. elongatus 在光混合营养生长过程中的代谢机制的全面了解将为基于这一潜在底盘的更高效和可控的生物生产系统的工程设计提供启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f504/8897908/e43fa141bd37/12934_2022_1760_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验