Hong Baojian
Faculty of Mathematical Physics, Nanjing Institute of Technology, Nanjing 211167, China.
Math Biosci Eng. 2023 Jun 30;20(8):14377-14394. doi: 10.3934/mbe.2023643.
In this work, we focus on a class of generalized time-space fractional nonlinear Schrödinger equations arising in mathematical physics. After utilizing the general mapping deformation method and theory of planar dynamical systems with the aid of symbolic computation, abundant new exact complex doubly periodic solutions, solitary wave solutions and rational function solutions are obtained. Some of them are found for the first time and can be degenerated to trigonometric function solutions. Furthermore, by applying the bifurcation theory method, the periodic wave solutions and traveling wave solutions with the corresponding phase orbits are easily obtained. Moreover, some numerical simulations of these solutions are portrayed, showing the novelty and visibility of the dynamical structure and propagation behavior of this model.
在这项工作中,我们关注一类在数学物理中出现的广义时空分数阶非线性薛定谔方程。借助符号计算,利用一般映射变形方法和平面动力系统理论,得到了丰富的新的精确复双周期解、孤立波解和有理函数解。其中一些是首次发现,并且可以退化为三角函数解。此外,通过应用分岔理论方法,很容易得到具有相应相轨道的周期波解和行波解。而且,对这些解进行了一些数值模拟,展示了该模型动力学结构和传播行为的新颖性和可视化效果。