Suppr超能文献

基于CT的放射组学用于预测非手术食管癌的放化疗反应和总生存期

CT-based radiomics for predicting radio-chemotherapy response and overall survival in nonsurgical esophageal carcinoma.

作者信息

Li Chao, Pan Yuteng, Yang Xianghui, Jing Di, Chen Yu, Luo Chenhua, Qiu Jianfeng, Hu Yongmei, Zhang Zijian, Shi Liting, Shen Liangfang, Zhou Rongrong, Lu Shanfu, Xiao Xiang, Chen Tingyin

机构信息

Department of Oncology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.

Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China.

出版信息

Front Oncol. 2023 Aug 23;13:1219106. doi: 10.3389/fonc.2023.1219106. eCollection 2023.

Abstract

BACKGROUND

To predict treatment response and 2 years overall survival (OS) of radio-chemotherapy in patients with esophageal cancer (EC) by radiomics based on the computed tomography (CT) images.

METHODS

This study retrospectively collected 171 nonsurgical EC patients treated with radio-chemotherapy from Jan 2010 to Jan 2019. 80 patients were randomly divided into training (n=64) and validation (n=16) cohorts to predict the radiochemotherapy response. The models predicting treatment response were established by Lasso and logistic regression. A total of 156 patients were allocated into the training cohort (n=110), validation cohort (n=23) and test set (n=23) to predict 2-year OS. The Lasso Cox model and Cox proportional hazards model established the models predicting 2-year OS.

RESULTS

To predict the radiochemotherapy response, WFK as a radiomics feature, and clinical stages and clinical M stages (cM) as clinical features were selected to construct the clinical-radiomics model, achieving 0.78 and 0.75 AUC (area under the curve) in the training and validation sets, respectively. Furthermore, radiomics features called WFI and WGI combined with clinical features (smoking index, pathological types, cM) were the optimal predictors to predict 2-year OS. The AUC values of the clinical-radiomics model were 0.71 and 0.70 in the training set and validation set, respectively.

CONCLUSIONS

This study demonstrated that planning CT-based radiomics showed the predictability of the radiochemotherapy response and 2-year OS in nonsurgical esophageal carcinoma. The predictive results prior to treatment have the potential to assist physicians in choosing the optimal therapeutic strategy to prolong overall survival.

摘要

背景

基于计算机断层扫描(CT)图像的放射组学预测食管癌(EC)患者放化疗的治疗反应和2年总生存期(OS)。

方法

本研究回顾性收集了2010年1月至2019年1月接受放化疗的171例非手术EC患者。80例患者被随机分为训练组(n = 64)和验证组(n = 16)以预测放化疗反应。通过Lasso和逻辑回归建立预测治疗反应的模型。共156例患者被分配到训练组(n = 110)、验证组(n = 23)和测试集(n = 23)以预测2年OS。Lasso Cox模型和Cox比例风险模型建立了预测2年OS的模型。

结果

为预测放化疗反应,选择WFK作为放射组学特征,临床分期和临床M分期(cM)作为临床特征构建临床 - 放射组学模型,在训练集和验证集中分别获得0.78和0.75的曲线下面积(AUC)。此外,名为WFI和WGI的放射组学特征与临床特征(吸烟指数、病理类型、cM)相结合是预测2年OS的最佳预测指标。临床 - 放射组学模型在训练集和验证集中的AUC值分别为0.71和0.70。

结论

本研究表明,基于计划CT的放射组学显示了非手术食管癌放化疗反应和2年OS的可预测性。治疗前的预测结果有可能帮助医生选择最佳治疗策略以延长总生存期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd0d/10482418/608f843d7c75/fonc-13-1219106-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验