Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China.
FASEB J. 2023 Oct;37(10):e23182. doi: 10.1096/fj.202300900R.
A link between increased glycolysis and vascular calcification has recently been reported, but it remains unclear how increased glycolysis contributes to vascular calcification. We therefore investigated the role of PFKFB3, a critical enzyme of glycolysis, in vascular calcification. We found that PFKFB3 expression was upregulated in calcified mouse VSMCs and arteries. We showed that expression of miR-26a-5p and miR-26b-5p in calcified mouse arteries was significantly decreased, and a negative correlation between Pfkfb3 mRNA expression and miR-26a-5p or miR-26b-5p was seen in these samples. Overexpression of miR-26a/b-5p significantly inhibited PFKFB3 expression in VSMCs. Intriguingly, pharmacological inhibition of PFKFB3 using PFK15 or knockdown of PFKFB3 ameliorated vascular calcification in vD -overloaded mice in vivo or attenuated high phosphate (Pi)-induced VSMC calcification in vitro. Consistently, knockdown of PFKFB3 significantly reduced glycolysis and osteogenic transdifferentiation of VSMCs, whereas overexpression of PFKFB3 in VSMCs induced the opposite effects. RNA-seq analysis and subsequent experiments revealed that silencing of PFKFB3 inhibited FoxO3 expression in VSMCs. Silencing of FoxO3 phenocopied the effects of PFKFB3 depletion on Ocn and Opg expression but not Alpl in VSMCs. Pyruvate or lactate supplementation, the product of glycolysis, reversed the PFKFB3 depletion-mediated effects on ALP activity and OPG protein expression in VSMCs. Our results reveal that blockade of PFKFB3-mediated glycolysis inhibits vascular calcification in vitro and in vivo. Mechanistically, we show that FoxO3 and lactate production are involved in PFKFB3-driven osteogenic transdifferentiation of VSMCs. PFKFB3 may be a promising therapeutic target for the treatment of vascular calcification.
最近有研究报道,糖酵解增强与血管钙化之间存在关联,但糖酵解如何促进血管钙化仍不清楚。因此,我们研究了糖酵解关键酶 PFKFB3 在血管钙化中的作用。我们发现,PFKFB3 在钙化的小鼠血管平滑肌细胞和动脉中表达上调。我们表明,在钙化的小鼠动脉中,miR-26a-5p 和 miR-26b-5p 的表达显著下调,并且这些样本中 Pfkfb3 mRNA 表达与 miR-26a-5p 或 miR-26b-5p 呈负相关。miR-26a/b-5p 的过表达显著抑制了 VSMCs 中的 PFKFB3 表达。有趣的是,使用 PFK15 抑制 PFKFB3 或敲低 PFKFB3 在体内减轻了 vD 过载小鼠的血管钙化,或在体外减弱了高磷(Pi)诱导的 VSMC 钙化。一致地,敲低 PFKFB3 显著降低了 VSMCs 的糖酵解和成骨转化,而在 VSMCs 中过表达 PFKFB3 则产生相反的效果。RNA-seq 分析和随后的实验表明,PFKFB3 的沉默抑制了 VSMCs 中 FoxO3 的表达。沉默 FoxO3 可模拟 PFKFB3 耗竭对 Ocn 和 Opg 在 VSMCs 中表达的影响,但对 Alpl 无影响。糖酵解产物丙酮酸或乳酸的补充逆转了 PFKFB3 耗竭对 VSMCs 中 ALP 活性和 OPG 蛋白表达的影响。我们的结果表明,阻断 PFKFB3 介导的糖酵解可抑制体外和体内的血管钙化。从机制上讲,我们表明 FoxO3 和乳酸的产生参与了 PFKFB3 驱动的 VSMCs 成骨转化。PFKFB3 可能是治疗血管钙化的有前途的治疗靶点。