Suppr超能文献

甲状腺癌多基因风险评分可提高甲状腺结节良恶性分类的准确性。

Thyroid Cancer Polygenic Risk Score Improves Classification of Thyroid Nodules as Benign or Malignant.

机构信息

Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.

出版信息

J Clin Endocrinol Metab. 2024 Jan 18;109(2):402-412. doi: 10.1210/clinem/dgad530.

Abstract

CONTEXT

Thyroid nodule ultrasound-based risk stratification schemas rely on the presence of high-risk sonographic features. However, some malignant thyroid nodules have benign appearance on thyroid ultrasound. New methods for thyroid nodule risk assessment are needed.

OBJECTIVE

We investigated polygenic risk score (PRS) accounting for inherited thyroid cancer risk combined with ultrasound-based analysis for improved thyroid nodule risk assessment.

METHODS

The convolutional neural network classifier was trained on thyroid ultrasound still images and cine clips from 621 thyroid nodules. Phenome-wide association study (PheWAS) and PRS PheWAS were used to optimize PRS for distinguishing benign and malignant nodules. PRS was evaluated in 73 346 participants in the Colorado Center for Personalized Medicine Biobank.

RESULTS

When the deep learning model output was combined with thyroid cancer PRS and genetic ancestry estimates, the area under the receiver operating characteristic curve (AUROC) of the benign vs malignant thyroid nodule classifier increased from 0.83 to 0.89 (DeLong, P value = .007). The combined deep learning and genetic classifier achieved a clinically relevant sensitivity of 0.95, 95% CI [0.88-0.99], specificity of 0.63 [0.55-0.70], and positive and negative predictive values of 0.47 [0.41-0.58] and 0.97 [0.92-0.99], respectively. AUROC improvement was consistent in European ancestry-stratified analysis (0.83 and 0.87 for deep learning and deep learning combined with PRS classifiers, respectively). Elevated PRS was associated with a greater risk of thyroid cancer structural disease recurrence (ordinal logistic regression, P value = .002).

CONCLUSION

Augmenting ultrasound-based risk assessment with PRS improves diagnostic accuracy.

摘要

背景

甲状腺结节超声风险分层方案依赖于高危超声特征的存在。然而,一些恶性甲状腺结节在甲状腺超声上表现为良性。需要新的甲状腺结节风险评估方法。

目的

我们研究了多基因风险评分(PRS),该评分考虑了遗传性甲状腺癌风险,并结合基于超声的分析,以提高甲状腺结节风险评估。

方法

卷积神经网络分类器在 621 个甲状腺结节的超声静态图像和电影片段上进行训练。表型全基因组关联研究(PheWAS)和 PRS PheWAS 用于优化 PRS,以区分良性和恶性结节。PRS 在科罗拉多个性化医学生物库的 73346 名参与者中进行了评估。

结果

当深度学习模型输出与甲状腺癌 PRS 和遗传祖先估计值结合时,良性与恶性甲状腺结节分类器的接收者操作特征曲线下面积(AUROC)从 0.83 增加到 0.89(DeLong,P 值=0.007)。联合深度学习和遗传分类器的敏感性为 0.95[0.88-0.99],特异性为 0.63[0.55-0.70],阳性和阴性预测值分别为 0.47[0.41-0.58]和 0.97[0.92-0.99],具有临床相关的意义。在欧洲血统分层分析中,AUROC 改善一致(深度学习和深度学习联合 PRS 分类器分别为 0.83 和 0.87)。PRS 升高与甲状腺癌结构性疾病复发的风险增加相关(有序逻辑回归,P 值=0.002)。

结论

用 PRS 增强基于超声的风险评估可提高诊断准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验