Andreu J M, de la Torre J, Carrascosa J L
Biochemistry. 1986 Sep 9;25(18):5230-9. doi: 10.1021/bi00366a037.
The structural change induced by binding of mild detergents to cytoplasmic calf brain tubulin and the effects on the functional properties of this protein have been characterized. Massive binding of octyl glucoside or deoxycholate monomers induces circular dichroism changes indicating a partial alpha-helix to disordered structure transition of tubulin. The protein also becomes more accessible to controlled proteolysis by trypsin, thermolysin, or V8 protease. This is consistent with the looser protein structure proposed in previous binding and hydrodynamic studies [Andreu, J. M., & Muñoz, J. A. (1986) Biochemistry (preceding paper in this issue)]. Micelles of octyl glucoside and deoxycholate bind colchicine and its analogue 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC). This impedes the determination of colchicine binding in the presence of detergents. Both detergents cause a reduction in the number of tubulin equilibrium binding sites for the colchicine site probe MTC. Deoxycholate monomers bind poorly to the tubulin-colchicine complex, but deoxycholate above the critical micelle concentration effectively dissociates the complex. Microtubule assembly in glycerol-containing buffer is inhibited by octyl glucoside, which raises the critical protein concentration. Low concentrations of deoxycholate enhance tubulin polymerization, allowing it to proceed without glycerol. The polymers formed are microtubules, pairwise associated open microtubular sheets, and macrotubules possibly generated by helical folding of the sheets, as indicated by the optical diffraction patterns. Saturation of tubulin with octyl glucoside, followed by full dissociation of the detergent, allowed the recovery of binding to the colchicine site and microtubule assembly, indicating the reversibility of the protein structural change.
温和去污剂与细胞质小牛脑微管蛋白结合所诱导的结构变化及其对该蛋白质功能特性的影响已得到表征。辛基葡糖苷或脱氧胆酸盐单体的大量结合会引起圆二色性变化,表明微管蛋白从部分α-螺旋结构向无序结构转变。该蛋白质对胰蛋白酶、嗜热菌蛋白酶或V8蛋白酶的可控蛋白水解也变得更易接近。这与先前结合和流体动力学研究中提出的较松散的蛋白质结构一致[安德鲁,J.M.,& 穆尼奥斯,J.A.(1986年)《生物化学》(本期前一篇论文)]。辛基葡糖苷和脱氧胆酸盐的胶束结合秋水仙碱及其类似物2-甲氧基-5-(2,3,4-三甲氧基苯基)-2,4,6-环庚三烯-1-酮(MTC)。这妨碍了在去污剂存在下秋水仙碱结合的测定。两种去污剂都会使秋水仙碱位点探针MTC的微管蛋白平衡结合位点数量减少。脱氧胆酸盐单体与微管蛋白-秋水仙碱复合物的结合较差,但高于临界胶束浓度的脱氧胆酸盐能有效解离该复合物。含甘油缓冲液中的微管组装受到辛基葡糖苷的抑制,辛基葡糖苷会提高临界蛋白质浓度。低浓度的脱氧胆酸盐会增强微管蛋白的聚合,使其在无甘油的情况下也能进行。如光学衍射图所示,形成的聚合物是微管、成对相连的开放微管片以及可能由片层螺旋折叠产生的大微管。用辛基葡糖苷使微管蛋白饱和,随后使去污剂完全解离,可恢复与秋水仙碱位点的结合以及微管组装,表明蛋白质结构变化是可逆的。