MOE Key Lab of Environmental Remediation and Ecosystem Health, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
Environ Res. 2023 Dec 1;238(Pt 1):117096. doi: 10.1016/j.envres.2023.117096. Epub 2023 Sep 6.
Flooded rice paddy fields are a significant source of anthropogenic methane (CH) emissions. Cadmium (Cd) is one of the most common and toxic contaminants in paddy soils. However, little is known about how the soil microbial communities associated with CH emissions respond to the increasing Cd-stress in paddies. In this study, we employed isotopically C-labelled CH, high-throughput sequencing analysis, and gene quantification analysis to reveal the effect and mechanism of Cd on CH emissions in paddy soils. Results showed that 4.0 mg kg Cd addition reduced CH emissions by 16-99% in the four tested paddy soils, and significantly promoted the transformation of CH to CO. Quantitative polymerase chain reaction (qPCR) demonstrated that Cd addition increased the abundances of pmoA gene, the ratios of methanogens to methanotrophs (mcrA/pmoA) showed a positive correlation with CH emissions (R = 0.798, p < 0.01). Furthermore, the composition of the microbial community containing the pmoA gene was barely affected by Cd addition (p > 0.05). This observation was consistent with the findings of a pure incubation experiment where methanotrophs exhibited high tolerance to Cd. We argue that microbial feedback to Cd stress amplifies the contribution of methanotrophs to CH oxidation in rice fields through the complex interactions occurring among soil microbes. Our study highlights the overlooked association between Cd and CH dynamics, offering a better understanding of the role of rice paddies in global CH cycling.
稻田是人为甲烷 (CH) 排放的重要来源。镉 (Cd) 是稻田土壤中最常见和毒性最大的污染物之一。然而,人们对与 CH 排放相关的土壤微生物群落如何应对稻田中 Cd 压力的增加知之甚少。在这项研究中,我们采用了同位素 C 标记的 CH、高通量测序分析和基因定量分析来揭示 Cd 对稻田 CH 排放的影响和机制。结果表明,在四种测试的稻田土壤中,添加 4.0 mg kg 的 Cd 可将 CH 排放减少 16-99%,并显著促进 CH 向 CO 的转化。定量聚合酶链反应 (qPCR) 表明,Cd 增加了 pmoA 基因的丰度,甲烷菌与甲烷氧化菌的比例 (mcrA/pmoA) 与 CH 排放呈正相关 (R = 0.798,p < 0.01)。此外,添加 Cd 几乎不会影响含 pmoA 基因的微生物群落的组成 (p > 0.05)。这一观察结果与纯培养实验的结果一致,即在该实验中,甲烷氧化菌对 Cd 具有很高的耐受性。我们认为,微生物对 Cd 胁迫的反馈通过土壤微生物之间发生的复杂相互作用,放大了甲烷氧化菌对稻田 CH 氧化的贡献。我们的研究强调了 Cd 和 CH 动态之间被忽视的关联,为了解稻田在全球 CH 循环中的作用提供了更好的认识。