Suppr超能文献

蓝藻与甲烷处理微生物之间的相互作用可减少稻田土壤中的甲烷排放。

Interactions between Cyanobacteria and Methane Processing Microbes Mitigate Methane Emissions from Rice Soils.

作者信息

Pérez Germán, Krause Sascha M B, Bodelier Paul L E, Meima-Franke Marion, Pitombo Leonardo, Irisarri Pilar

机构信息

Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands.

Laboratory of Microbiology, Department of Plant Biology, Agronomy Faculty, University of the Republic, Montevideo 12900, Uruguay.

出版信息

Microorganisms. 2023 Nov 21;11(12):2830. doi: 10.3390/microorganisms11122830.

Abstract

Cyanobacteria play a relevant role in rice soils due to their contribution to soil fertility through nitrogen (N) fixation and as a promising strategy to mitigate methane (CH) emissions from these systems. However, information is still limited regarding the mechanisms of cyanobacterial modulation of CH cycling in rice soils. Here, we focused on the response of methane cycling microbial communities to inoculation with cyanobacteria in rice soils. We performed a microcosm study comprising rice soil inoculated with either of two cyanobacterial isolates ( sp. and sp.) obtained from a rice paddy. Our results demonstrate that cyanobacterial inoculation reduced CH emissions by 20 times. Yet, the effect on CH cycling microbes differed for the cyanobacterial strains. Type Ia methanotrophs were stimulated by sp. in the surface layer, while sp. had the opposite effect. The overall transcripts of Type Ib methanotrophs were stimulated by . Methanogens were not affected in the surface layer, while their abundance was reduced in the sub surface layer by the presence of sp. Our results indicate that mitigation of methane emission from rice soils based on cyanobacterial inoculants depends on the proper pairing of cyanobacteria-methanotrophs and their respective traits.

摘要

蓝藻细菌在水稻土中发挥着重要作用,因为它们通过固氮作用对土壤肥力有贡献,并且作为一种减轻这些系统中甲烷(CH)排放的有前景策略。然而,关于水稻土中蓝藻细菌对CH循环调节机制的信息仍然有限。在此,我们聚焦于水稻土中甲烷循环微生物群落对蓝藻细菌接种的响应。我们进行了一项微观研究,该研究包括用从稻田获得的两种蓝藻细菌分离株( 种和 种)之一接种的水稻土。我们的结果表明,接种蓝藻细菌使CH排放减少了20倍。然而,蓝藻细菌菌株对CH循环微生物的影响有所不同。Ia型甲烷氧化菌在表层受到 种的刺激,而 种则有相反的效果。Ib型甲烷氧化菌的总体转录本受到 种的刺激。产甲烷菌在表层不受影响,而在亚表层, 种的存在使其丰度降低。我们的结果表明,基于蓝藻细菌接种剂减轻水稻土甲烷排放取决于蓝藻细菌 - 甲烷氧化菌的适当配对及其各自的特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/587f/10745823/67d42e2e1c01/microorganisms-11-02830-g001.jpg

相似文献

1
Interactions between Cyanobacteria and Methane Processing Microbes Mitigate Methane Emissions from Rice Soils.
Microorganisms. 2023 Nov 21;11(12):2830. doi: 10.3390/microorganisms11122830.
2
Cadmium reduced methane emissions by stimulating methane oxidation in paddy soils.
Environ Res. 2023 Dec 1;238(Pt 1):117096. doi: 10.1016/j.envres.2023.117096. Epub 2023 Sep 6.
4
Responses of soil methanogens, methanotrophs, and methane fluxes to land-use conversion and fertilization in a hilly red soil region of southern China.
Environ Sci Pollut Res Int. 2017 Mar;24(9):8731-8743. doi: 10.1007/s11356-017-8628-y. Epub 2017 Feb 17.
5
Arsenic Reduces Methane Emissions from Paddy Soils: Insights from Continental Investigation and Laboratory Incubations.
Environ Sci Technol. 2024 Oct 8;58(40):17685-17694. doi: 10.1021/acs.est.4c06809. Epub 2024 Sep 24.
6
Manure amendment increased the abundance of methanogens and methanotrophs but suppressed the type I methanotrophs in rice paddies.
Environ Sci Pollut Res Int. 2020 Mar;27(8):8016-8027. doi: 10.1007/s11356-019-07464-1. Epub 2019 Dec 31.
7
A new approach to suppress methane emissions from rice cropping systems using ethephon.
Sci Total Environ. 2022 Jan 15;804:150159. doi: 10.1016/j.scitotenv.2021.150159. Epub 2021 Sep 7.
8
Microbial communities controlling methane and nutrient cycling in leach field soils.
Water Res. 2019 Mar 15;151:456-467. doi: 10.1016/j.watres.2018.12.036. Epub 2018 Dec 27.
10
Inoculation Effect of Methanotrophs on Rhizoremediation Performance and Methane Emission in Diesel-Contaminated Soil.
J Microbiol Biotechnol. 2023 Jul 28;33(7):886-894. doi: 10.4014/jmb.2301.01007. Epub 2023 Apr 14.

本文引用的文献

2
Autofermentation of alkaline cyanobacterial biomass to enable biorefinery approach.
Biotechnol Biofuels Bioprod. 2023 Apr 8;16(1):62. doi: 10.1186/s13068-023-02311-5.
3
Photobiohydrogen Production and Strategies for H Yield Improvements in Cyanobacteria.
Adv Biochem Eng Biotechnol. 2023;183:253-279. doi: 10.1007/10_2023_216.
4
Space-for-time substitution leads to carbon emission overestimation in eutrophic lakes.
Environ Res. 2023 Feb 15;219:115175. doi: 10.1016/j.envres.2022.115175. Epub 2022 Dec 27.
7
Methanotrophy by a Mycobacterium species that dominates a cave microbial ecosystem.
Nat Microbiol. 2022 Dec;7(12):2089-2100. doi: 10.1038/s41564-022-01252-3. Epub 2022 Nov 3.
8
Structure and activity of particulate methane monooxygenase arrays in methanotrophs.
Nat Commun. 2022 Sep 5;13(1):5221. doi: 10.1038/s41467-022-32752-9.
9
Impacts of cyanobacterial biomass and nitrate nitrogen on methanogens in eutrophic lakes.
Sci Total Environ. 2022 Nov 20;848:157570. doi: 10.1016/j.scitotenv.2022.157570. Epub 2022 Jul 27.
10
Methane-Derived Carbon as a Driver for Cyanobacterial Growth.
Front Microbiol. 2022 Apr 1;13:837198. doi: 10.3389/fmicb.2022.837198. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验