Kim Sunwoo, Gim Yejin, Lee Wonho
Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea.
Nanomaterials (Basel). 2023 Aug 28;13(17):2436. doi: 10.3390/nano13172436.
The cold sintering process (CSP) for synthesizing oxide-based electrolytes, which uses water transient solvents and uniaxial pressure, is a promising alternative to the conventional high temperature sintering process due to its low temperature (<200 °C) and short processing time (<2 h). However, the formation of amorphous secondary phases in the intergranular regions, which results in poor ionic conductivity (σ), remains a challenge. In this study, we introduced high-boiling solvents of dimethylformamide (DMF, b.p.: 153 °C) and dimethyl sulfoxide (DMSO, b.p.: 189 °C) as transient solvents to develop composite electrolytes of Li.Al.Ge.(PO) (LAGP) with bis(trifluoromethane)sulfonimide lithium salt (LiTFSI). Our results show that composite electrolytes processed with the DMF/water mixture (CSP LAGP-LiTFSI DMF/HO) yield a high σ of 10 S cm at room temperature and high relative densities of >87%. Furthermore, the composite electrolytes exhibit good thermal stability; the σ maintains its initial value after heat treatment. In contrast, the composite electrolytes processed with the DMSO/water mixture and water alone show thermal degradation. The CSP LAGP-LiTFSI DMF/HO composite electrolytes exhibit long-term stability, showing no signs of short circuiting after 350 h at 0.1 mAh cm in Li symmetric cells. Our work highlights the importance of selecting appropriate transient solvents for producing efficient and stable composite electrolytes using CSP.
用于合成氧化物基电解质的冷烧结工艺(CSP),采用水基瞬态溶剂和单轴压力,由于其低温(<200°C)和短加工时间(<2小时),是传统高温烧结工艺的一个有前途的替代方法。然而,在晶界区域形成非晶态第二相,导致离子电导率(σ)较差,仍然是一个挑战。在本研究中,我们引入了高沸点溶剂二甲基甲酰胺(DMF,沸点:153°C)和二甲基亚砜(DMSO,沸点:189°C)作为瞬态溶剂,以开发含有双(三氟甲烷)磺酰亚胺锂盐(LiTFSI)的Li.Al.Ge.(PO)(LAGP)复合电解质。我们的结果表明,用DMF/水混合物处理的复合电解质(CSP LAGP-LiTFSI DMF/H₂O)在室温下产生高达10 S cm的高σ和>87%的高相对密度。此外,复合电解质表现出良好的热稳定性;热处理后σ保持其初始值。相比之下,用DMSO/水混合物和单独用水处理的复合电解质表现出热降解。CSP LAGP-LiTFSI DMF/H₂O复合电解质表现出长期稳定性,在Li对称电池中以0.1 mAh cm²的电流密度下350小时后没有短路迹象。我们的工作强调了选择合适的瞬态溶剂对于使用CSP生产高效稳定的复合电解质的重要性。