Sondors Raitis, Niherysh Kiryl, Andzane Jana, Palermo Xavier, Bauch Thilo, Lombardi Floriana, Erts Donats
Institute of Chemical Physics, University of Latvia, LV-1586 Riga, Latvia.
Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg, Sweden.
Nanomaterials (Basel). 2023 Sep 3;13(17):2484. doi: 10.3390/nano13172484.
In this work, a simple catalyst-free physical vapor deposition method is optimized by adjusting source material pressure and evaporation time for the reliable obtaining of freestanding nanoribbons with thicknesses below 15 nm. The optimum synthesis temperature, time and pressure were determined for an increased yield of ultrathin BiSe nanoribbons with thicknesses of 8-15 nm. Physical and electrical characterization of the synthesized BiSe nanoribbons with thicknesses below 15 nm revealed no degradation of properties of the nanoribbons, as well as the absence of the contribution of trivial bulk charge carriers to the total conductance of the nanoribbons.
在本工作中,通过调整源材料压力和蒸发时间,优化了一种简单的无催化剂物理气相沉积方法,以可靠地获得厚度低于15nm的独立纳米带。确定了最佳合成温度、时间和压力,以提高厚度为8 - 15nm的超薄BiSe纳米带的产量。对厚度低于15nm的合成BiSe纳米带进行的物理和电学表征表明,纳米带的性能没有退化,并且没有微不足道的体电荷载流子对纳米带总电导产生贡献。