Suppr超能文献

多组学揭示盐胁迫下外源钙对花生根系代谢的调控作用

Multi-Omics Revealed Peanut Root Metabolism Regulated by Exogenous Calcium under Salt Stress.

作者信息

Dong Xuan, Gao Yan, Bao Xuefeng, Wang Rongjin, Ma Xinyu, Zhang Hui, Liu Yifei, Jin Lanshu, Lin Guolin

机构信息

College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China.

Testing Center for Agricultural Product Safety and Environmental Quality, Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, No. 72, Culture Road, Shenhe District, Shenyang 110017, China.

出版信息

Plants (Basel). 2023 Aug 31;12(17):3130. doi: 10.3390/plants12173130.

Abstract

High salinity severely inhibits plant seedling root development and metabolism. Although plant salt tolerance can be improved by exogenous calcium supplementation, the metabolism molecular mechanisms involved remain unclear. In this study, we integrated three types of omics data (transcriptome, metabolome, and phytohormone absolute quantification) to analyze the metabolic profiles of peanut seedling roots as regulated by exogenous calcium under salt stress. (1) exogenous calcium supplementation enhanced the allocation of carbohydrates to the TCA cycle and plant cell wall biosynthesis rather than the shikimate pathway influenced by up-regulating the gene expression of antioxidant enzymes under salt stress; (2) exogenous calcium induced further ABA accumulation under salt stress by up-regulating the gene expression of ABA biosynthesis key enzymes AAO2 and AAO3 while down-regulating ABA glycosylation enzyme UGT71C5 expression; (3) exogenous calcium supplementation under salt stress restored the zeatin absolute content to unstressed levels while inhibiting the root -zeatin biosynthesis.

摘要

高盐度严重抑制植物幼苗根系发育和新陈代谢。尽管外源补钙可提高植物耐盐性,但其涉及的代谢分子机制仍不清楚。在本研究中,我们整合了三种组学数据(转录组、代谢组和植物激素绝对定量),以分析盐胁迫下外源钙调控的花生幼苗根系代谢谱。(1)外源补钙通过上调盐胁迫下抗氧化酶的基因表达,增强了碳水化合物向三羧酸循环和植物细胞壁生物合成的分配,而非对莽草酸途径的影响;(2)外源钙通过上调脱落酸生物合成关键酶AAO2和AAO3的基因表达,同时下调脱落酸糖基化酶UGT71C5的表达,在盐胁迫下诱导脱落酸进一步积累;(3)盐胁迫下外源补钙使玉米素绝对含量恢复到未胁迫水平,同时抑制根系玉米素生物合成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe2/10490012/b86bd68b7c6b/plants-12-03130-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验