Suppr超能文献

基于高分辨率W波段雷达的小目标检测杂波对消方法

Clutter Cancellation Methods for Small Target Detection Using High-Resolution W-band Radar.

作者信息

Hwang Woosung, Jang Hongje, Choi Myungryul

机构信息

Department of EECI Engineering, Hanyang University, Seoul 04763, Republic of Korea.

Division of Electrical Engineering, Hanyang University, Seoul 04763, Republic of Korea.

出版信息

Sensors (Basel). 2023 Aug 31;23(17):7557. doi: 10.3390/s23177557.

Abstract

Drones are currently being used for various applications. However, the detection of drones for defense or security purposes has become problematic because of the use of plastic materials and the small size of these drones. Any drone can be placed under surveillance to accurately determine its position by collecting high-resolution data using various detectors such as the radar system proposed in this paper. The W-band radar has a high carrier frequency, which makes it easy to design a wide bandwidth system, and the wideband FMCW signal is suitable for creating high resolution images from a distance. Unfortunately, the huge amounts of data gathered in this way also contain clutter (such as background data and noise) that is usually generated from unstable radar systems and complex environmental factors, and which frequently gives rise to distorted data. Accurate extraction of the position of the target from this big data requires the clutter to be suppressed and canceled, but conventional clutter cancellation methods are not suitable. Four clutter cancellation algorithms are assessed and compared: standard deviation, adaptive least mean squares (LMS), recursive least squares (RLS), and the proposed LMS. The proposed LMS has combined LMS with the standard deviation method. First, the big data pertaining to the target position is collected using the W-band radar system. Subsequently, the target position is calculated by applying these algorithms. The performance of the proposed algorithms is measured and compared to that of the other three algorithms by conducting outdoor experiments.

摘要

无人机目前正被用于各种应用。然而,由于塑料材料的使用以及这些无人机体积较小,用于国防或安全目的的无人机探测已成为一个问题。任何无人机都可以被置于监视之下,通过使用本文提出的雷达系统等各种探测器收集高分辨率数据来准确确定其位置。W波段雷达具有较高的载波频率,这使得设计宽带系统变得容易,并且宽带调频连续波(FMCW)信号适用于从远距离创建高分辨率图像。不幸的是,以这种方式收集的大量数据还包含杂波(如背景数据和噪声),这些杂波通常由不稳定的雷达系统和复杂的环境因素产生,并且经常导致数据失真。要从这些大数据中准确提取目标位置,需要抑制和消除杂波,但传统的杂波消除方法并不适用。对四种杂波消除算法进行了评估和比较:标准差、自适应最小均方(LMS)、递归最小二乘(RLS)以及所提出的LMS。所提出的LMS将LMS与标准差方法相结合。首先,使用W波段雷达系统收集与目标位置相关的大数据。随后,通过应用这些算法计算目标位置。通过进行户外实验来测量所提出算法的性能,并与其他三种算法的性能进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fca5/10490681/7067d8b0c809/sensors-23-07557-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验