Suppr超能文献

锚定在中空碳质纳米盘上的用于高性能锂硫电池的非金属键合铁锰双原子对

Nonmetallic-Bonding Fe-Mn Diatomic Pairs Anchored on Hollow Carbonaceous Nanodisks for High-Performance Li-S Battery.

作者信息

Zhang Tengfei, Luo Dengfeng, Xiao Hong, Liang Xiao, Zhang Fanchao, Zhuang Huifeng, Xu Mengyuan, Dai Wenjing, Qi Shuanhu, Zheng Lirong, Gao Qiuming

机构信息

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.

Peng Cheng Laboratory, Shenzhen, 518055, P. R. China.

出版信息

Small. 2024 Jan;20(3):e2306806. doi: 10.1002/smll.202306806. Epub 2023 Sep 8.

Abstract

The issues of polysulfide shuttling and lethargic sulfur redox reaction (SROR) kinetics are the toughest obstacles of lithium-sulfur (Li-S) battery. Herein, integrating the merits of increased density of metal sites and synergistic catalytic effect, a unique single-atom catalyst (SAC) with nonmetallic-bonding Fe-Mn diatomic pairs anchored on hollow nitrogen-doped carbonaceous nanodisk (denoted as FeMnDA@NC) is successfully constructed and well characterized by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, etc. Density functional theory calculation indicates that the Fe-Mn diatomic pairs can effectively inhibit the shuttle effect by enhancing the adsorption ability retarding the polysulfide migration and accelerate the SROR kinetics. As a result, the Li-S battery assembled with FeMnDA@NC modified separator possesses an excellent electrochemical performance with ultrahigh specific capacities of 1419 mAh g at 0.1 C and 885 mAh g at 3.0 C, respectively. An outstanding specific capacity of 1165 mAh g is achieved at 1.0 C and maintains at 731 mAh g after 700 cycles. Notably, the assembled Li-S battery with a high sulfur loading of 5.35 mg cm harvests a practical areal capacity of 5.70 mAh cm at 0.2 C. A new perspective is offered here to construct advanced SACs suitable for the Li-S battery.

摘要

多硫化物穿梭效应和迟缓的硫氧化还原反应(SROR)动力学问题是锂硫(Li-S)电池面临的最严峻障碍。在此,结合金属位点密度增加和协同催化效应的优点,成功构建了一种独特的单原子催化剂(SAC),其具有锚定在中空氮掺杂碳纳米盘上的非金属键合Fe-Mn双原子对(表示为FeMnDA@NC),并通过像差校正高角度环形暗场扫描透射电子显微镜、X射线吸收光谱等进行了充分表征。密度泛函理论计算表明,Fe-Mn双原子对可通过增强吸附能力来有效抑制穿梭效应,从而阻碍多硫化物迁移,并加速SROR动力学。结果,采用FeMnDA@NC修饰隔膜组装的Li-S电池具有优异的电化学性能,在0.1 C时具有1419 mAh g的超高比容量,在3.0 C时具有885 mAh g的超高比容量。在1.0 C时实现了1165 mAh g的出色比容量,并在700次循环后保持在731 mAh g。值得注意的是,组装的高硫负载为5.35 mg cm²的Li-S电池在0.2 C时的实际面积容量为5.70 mAh cm²。本文提供了一个新的视角来构建适用于Li-S电池的先进SAC。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验