Essen Carolina von, Luedeker David
Merck KGaA, Darmstadt, Germany.
Merck KGaA, Darmstadt, Germany.
Drug Discov Today. 2023 Nov;28(11):103763. doi: 10.1016/j.drudis.2023.103763. Epub 2023 Sep 7.
Pharmaceutical co-crystals represent a growing class of crystal forms in the context of pharmaceutical science. They are attractive to pharmaceutical scientists because they significantly expand the number of crystal forms that exist for an active pharmaceutical ingredient and can lead to improvements in physicochemical properties of clinical relevance. At the same time, machine learning is finding its way into all areas of drug discovery and delivers impressive results. In this review, we attempt to provide an overview of machine learning, deep learning and network-based recommendation approaches applied to pharmaceutical co-crystallization. We also present crystal structure prediction as an alternative to machine learning approaches.
在药物科学领域,药物共晶代表了一类不断发展的晶体形式。它们对药物科学家具有吸引力,因为它们显著增加了活性药物成分存在的晶体形式数量,并可带来具有临床相关性的物理化学性质的改善。与此同时,机器学习正在进入药物发现的各个领域并取得了令人瞩目的成果。在本综述中,我们试图概述应用于药物共结晶的机器学习、深度学习和基于网络的推荐方法。我们还将晶体结构预测作为机器学习方法的替代方法进行介绍。