Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, USA.
National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China.
J Environ Qual. 2023 Nov-Dec;52(6):1092-1101. doi: 10.1002/jeq2.20513. Epub 2023 Sep 20.
The use of the phenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been steadily increasing in recent years due to its selectivity against broad-leafed weeds and use on genetically modified crops resistant to 2,4-D. This increases the likelihood of 2,4-D persisting in agriculturally impacted soils, sediments, and aquatic systems. Aerobic microorganisms are capable of degrading 2,4-D enzymatically. Anaerobic degradation also occurs, though the enzymatic pathway is unclear. Iron-reducing bacteria (FeRB) have been hypothesized to augment anaerobic degradation through the production of a chemically reactive Fe(II) adsorbed to Fe(III) oxyhydroxides. To test whether this iron species can catalyze abiotic degradation of 2,4-D, an enrichment culture (BLA1) containing a photosynthetic Fe(II)-oxidizing bacterium (FeOB) "Candidatus Chlorobium masyuteum" and the FeRB "Candidatus Pseudopelobacter ferreus", both of which lacked known 2,4-D degradation genes was investigated. BLA1 produces Fe(II)-adsorbed to Fe(III) oxyhydroxides during alternating photoautotrophic iron oxidation and dark iron reduction (amended with acetate) cycles. No 2,4-D degradation occurred during iron oxidation by FeOB Ca. C. masyuteum or during iron reduction by FeRB Ca. P. ferreus under any incubation conditions tested (i.e., +/-Fe(II), +/-cells, and +/-light), or due to the presence of Fe(II) adsorbed to Fe(III) oxyhydroxides. Our results cast doubt on the hypothesis that the mineral-bound Fe(II) species augments the anaerobic degradation of 2,4-D in anoxic soils and waters by iron-cycling bacteria, and further justify the need to identify the genetic underpinnings of anaerobic 2,4-D degradation.
近年来,由于其对阔叶杂草的选择性以及对耐 2,4-D 的转基因作物的使用,苯氧羧酸类除草剂 2,4-二氯苯氧乙酸(2,4-D)的使用量稳步增加。这增加了 2,4-D 在受农业影响的土壤、沉积物和水生系统中持续存在的可能性。好氧微生物能够酶促降解 2,4-D。虽然酶促途径尚不清楚,但也会发生厌氧降解。铁还原菌(FeRB)已被假设通过产生化学活性的 Fe(II)并将其吸附到 Fe(III)氢氧化物上来增强厌氧降解。为了测试这种铁物种是否可以催化 2,4-D 的非生物降解,研究了一种含有光合 Fe(II)氧化菌(FeOB)“Candidatus Chlorobium masyuteum”和 FeRB“Candidatus Pseudopelobacter ferreus”的富集培养物(BLA1),这两种菌都缺乏已知的 2,4-D 降解基因。BLA1 在交替的光自养铁氧化和暗铁还原(用乙酸盐进行补充)循环中产生吸附在 Fe(III)氢氧化物上的 Fe(II)。在任何测试的孵育条件下(即 +/-Fe(II)、 +/-细胞和 +/-光照),FeOB Ca. Chlorobium masyuteum 进行铁氧化或 FeRB Ca. Pseudopelobacter ferreus 进行铁还原时都不会发生 2,4-D 降解,或者由于 Fe(II)吸附在 Fe(III)氢氧化物上而不会发生 2,4-D 降解。我们的结果对这样一个假设提出了质疑,即通过铁循环细菌,矿物结合的 Fe(II)物种会增强缺氧土壤和水中 2,4-D 的厌氧降解,并且进一步证明需要确定厌氧 2,4-D 降解的遗传基础。