Suppr超能文献

相似却又不同:生物力学力和培养时间对用于细胞和基因治疗的人巨核细胞外泌体的产生、货物装载及生物学功效的影响

Similar but distinct: The impact of biomechanical forces and culture age on the production, cargo loading, and biological efficacy of human megakaryocytic extracellular vesicles for applications in cell and gene therapies.

作者信息

Thompson Will, Papoutsakis Eleftherios Terry

机构信息

Department of Chemical and Biomolecular Engineering University of Delaware Newark Delaware USA.

出版信息

Bioeng Transl Med. 2023 Jun 22;8(5):e10563. doi: 10.1002/btm2.10563. eCollection 2023 Sep.

Abstract

Megakaryocytic extracellular vesicles (MkEVs) promote the growth and megakaryopoiesis of hematopoietic stem and progenitor cells (HSPCs) largely through endogenous miR-486-5p and miR-22-3p cargo. Here, we examine the impact of biomechanical force and culture age/differentiation on the formation, properties, and biological efficacy of MkEVs. We applied biomechanical force to Mks using two methods: shake flask cultures and a syringe pump system. Force increased MkEV production in a magnitude-dependent manner, with similar trends emerging regardless of whether flow cytometry or nanoparticle tracking analysis was used for MkEV counting. Both methods produced MkEVs that were relatively depleted of miR-486-5p and miR-22-3p cargo. However, while the shake flask-derived MkEVs were correspondingly less effective in promoting megakaryocytic differentiation of HSPCs, the syringe pump-derived MkEVs were effective in doing so, suggesting the presence of unique, unidentified miRNA cargo components. Higher numbers of MkEVs were also produced by "older" Mk cultures, though miRNA cargo levels and MkEV bioactivity were unaffected by culture age. A reduction in MkEV production by Mks derived from late-differentiating HSPCs was also noted. Taken together, our results demonstrate that biomechanical force has an underappreciated and deeply influential role in MkEV biology, though that role may vary significantly depending on the nature of the force. Given the ubiquity of biomechanical force in vivo and in biomanufacturing, this phenomenon must be grappled with before MkEVs can attain clinical relevance.

摘要

巨核细胞外泌体(MkEVs)主要通过内源性miR - 486 - 5p和miR - 22 - 3p促进造血干细胞和祖细胞(HSPCs)的生长和巨核细胞生成。在此,我们研究了生物力学力以及培养时间/分化对MkEVs的形成、特性和生物学功效的影响。我们使用两种方法对巨核细胞施加生物力学力:摇瓶培养和注射泵系统。力以大小依赖的方式增加MkEV的产量,无论使用流式细胞术还是纳米颗粒跟踪分析来计数MkEV,都出现了类似的趋势。两种方法产生的MkEVs中miR - 486 - 5p和miR - 22 - 3p相对减少。然而,虽然摇瓶来源的MkEVs在促进HSPCs的巨核细胞分化方面相应地效果较差,但注射泵来源的MkEVs却有效,这表明存在独特的、未鉴定的miRNA成分。“较老”的巨核细胞培养物也产生了更多的MkEVs,不过miRNA成分水平和MkEV生物活性不受培养时间的影响。我们还注意到,来自晚期分化HSPCs的巨核细胞产生的MkEVs产量有所减少。综上所述,我们的结果表明,生物力学力在MkEV生物学中具有未被充分认识但极具影响力的作用,尽管该作用可能因力的性质而有显著差异。鉴于生物力学力在体内和生物制造中普遍存在,在MkEVs能够具有临床相关性之前,必须解决这一现象。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8520/10486331/723b27ae0cc2/BTM2-8-e10563-g008.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验