Suppr超能文献

CRISPR-Cas9基因编辑与人类疾病。

CRISPR-Cas9 gene editing and human diseases.

作者信息

Jinka Chaitra, Sainath Chithirala, Babu Shyamaladevi, Chennupati Ashok Chakravarthi, Muppidi Lakshmi Prasanna, Krishnan Madhan, Sekar Gayathri, Chinnaiyan Mayilvanan, Andugula Swapna Kumari

机构信息

Department of Animal Biotechnology, Sri Venkateswara University, Tirupati - 517502.

Syngene International Limited, Biocon park, Bangalore, Karnataka, India.

出版信息

Bioinformation. 2022 Nov 30;18(11):1081-1086. doi: 10.6026/973206300181081. eCollection 2022.

Abstract

CRISPR/Cas-9 mediated genome editing has recently emerged as a potential and innovative technology in therapeutic development and biomedical research. Several recent studies have been performed to understand gene modification techniques in obtaining effective ex vivo results. Generally, the disease targets for gene correction will be in specific organs, so understanding the complete potential of genomic treatment methods is essential. From such a perspective, the present review revealed the significant importance of the CRISPR/ Cas9 delivery system. Both the promising gene-editing delivery systems, such as synthetic (non-viral) and viral vector systems are discussed in this review. In addition, this paper attempted to summarize the tissue-specific and organ-specific mRNA delivery systems that provide possible research information for future researchers. Further, the major challenges of the CRISPR/Cas9 system, such as off-target delivery, immunogenicity, and limited packaging, were also elucidated. Accordingly, this review illustrated a wide range of clinical applications associated with the efficient delivery of CRISPR/ Cas9 gene-editing. Moreover, this article emphasizes the role of the CRISPR/Cas9 system in treating Intra Cerebral haemorrhage (ICH), thereby suggesting future researchers to adopt more clinical trials on this breakthrough delivery system.

摘要

CRISPR/Cas-9介导的基因组编辑最近已成为治疗开发和生物医学研究中一项具有潜力和创新性的技术。最近进行了几项研究,以了解获得有效体外结果的基因修饰技术。一般来说,用于基因校正的疾病靶点将位于特定器官,因此了解基因组治疗方法的全部潜力至关重要。从这个角度来看,本综述揭示了CRISPR/Cas9递送系统的重要意义。本综述讨论了两种有前景的基因编辑递送系统,即合成(非病毒)和病毒载体系统。此外,本文试图总结组织特异性和器官特异性mRNA递送系统,为未来的研究人员提供可能的研究信息。此外,还阐明了CRISPR/Cas9系统的主要挑战,如脱靶递送、免疫原性和包装限制。因此,本综述阐述了与CRISPR/Cas9基因编辑有效递送相关的广泛临床应用。此外,本文强调了CRISPR/Cas9系统在治疗脑出血(ICH)中的作用,从而建议未来的研究人员对这一突破性递送系统进行更多的临床试验。

相似文献

1
CRISPR-Cas9 gene editing and human diseases.
Bioinformation. 2022 Nov 30;18(11):1081-1086. doi: 10.6026/973206300181081. eCollection 2022.
2
Delivery of Tissue-Targeted Scalpels: Opportunities and Challenges for CRISPR/Cas-Based Genome Editing.
ACS Nano. 2020 Aug 25;14(8):9243-9262. doi: 10.1021/acsnano.0c04707. Epub 2020 Jul 22.
3
Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing.
Drug Deliv Transl Res. 2023 May;13(5):1500-1519. doi: 10.1007/s13346-023-01320-z. Epub 2023 Mar 29.
4
5
CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications.
Pharmaceutics. 2021 Oct 9;13(10):1649. doi: 10.3390/pharmaceutics13101649.
6
Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field.
Sci China Life Sci. 2017 May;60(5):458-467. doi: 10.1007/s11427-017-9033-0. Epub 2017 May 2.
7
Delivery of CRISPR/Cas9 for therapeutic genome editing.
J Gene Med. 2019 Jul;21(7):e3107. doi: 10.1002/jgm.3107.
8
Key considerations in designing CRISPR/Cas9-carrying nanoparticles for therapeutic genome editing.
Nanoscale. 2020 Oct 29;12(41):21001-21014. doi: 10.1039/d0nr05452f.
9
In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications.
Biomaterials. 2022 Dec;291:121876. doi: 10.1016/j.biomaterials.2022.121876. Epub 2022 Oct 28.
10
CRISPR/Cas9 systems: Delivery technologies and biomedical applications.
Asian J Pharm Sci. 2023 Nov;18(6):100854. doi: 10.1016/j.ajps.2023.100854. Epub 2023 Oct 21.

本文引用的文献

2
3
genome editing in single mammalian brain neurons through CRISPR-Cas9 and cytosine base editors.
Comput Struct Biotechnol J. 2021 Apr 25;19:2477-2485. doi: 10.1016/j.csbj.2021.04.051. eCollection 2021.
4
CRISPR-Cas systems: Challenges and future prospects.
Prog Mol Biol Transl Sci. 2021;180:141-151. doi: 10.1016/bs.pmbts.2021.01.008. Epub 2021 Feb 15.
5
CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future.
Front Oncol. 2020 Aug 7;10:1387. doi: 10.3389/fonc.2020.01387. eCollection 2020.
6
Translating CRISPR-Cas Therapeutics: Approaches and Challenges.
CRISPR J. 2020 Aug;3(4):253-275. doi: 10.1089/crispr.2020.0025.
7
Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities.
Biosens Bioelectron. 2020 Oct 15;166:112445. doi: 10.1016/j.bios.2020.112445. Epub 2020 Jul 26.
8
Progress and challenges towards CRISPR/Cas clinical translation.
Adv Drug Deliv Rev. 2020;154-155:176-186. doi: 10.1016/j.addr.2020.07.004. Epub 2020 Jul 10.
9
Poly(Beta-Amino Ester) Nanoparticles Enable Nonviral Delivery of CRISPR-Cas9 Plasmids for Gene Knockout and Gene Deletion.
Mol Ther Nucleic Acids. 2020 Jun 5;20:661-672. doi: 10.1016/j.omtn.2020.04.005. Epub 2020 Apr 21.
10
Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing.
Nat Nanotechnol. 2020 Apr;15(4):313-320. doi: 10.1038/s41565-020-0669-6. Epub 2020 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验