Suppr超能文献

用于耳蜗毛细胞检测与分类的大规模注释数据集。

Large-scale annotated dataset for cochlear hair cell detection and classification.

作者信息

Buswinka Christopher J, Rosenberg David B, Simikyan Rubina G, Osgood Richard T, Fernandez Katharine, Nitta Hidetomi, Hayashi Yushi, Liberman Leslie W, Nguyen Emily, Yildiz Erdem, Kim Jinkyung, Jarysta Amandine, Renauld Justine, Wesson Ella, Thapa Punam, Bordiga Pierrick, McMurtry Noah, Llamas Juan, Kitcher Siân R, López-Porras Ana I, Cui Runjia, Behnammanesh Ghazaleh, Bird Jonathan E, Ballesteros Angela, Vélez-Ortega A Catalina, Edge Albert Sb, Deans Michael R, Gnedeva Ksenia, Shrestha Brikha R, Manor Uri, Zhao Bo, Ricci Anthony J, Tarchini Basile, Basch Martin, Stepanyan Ruben S, Landegger Lukas D, Rutherford Mark, Liberman M Charles, Walters Bradley J, Kros Corné J, Richardson Guy P, Cunningham Lisa L, Indzhykulian Artur A

机构信息

Eaton Peabody Laboratories, Mass Eye and Ear, Boston, MA, 02114, USA.

Department of Otolaryngology, Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA.

出版信息

bioRxiv. 2023 Sep 1:2023.08.30.553559. doi: 10.1101/2023.08.30.553559.

Abstract

Our sense of hearing is mediated by cochlear hair cells, localized within the sensory epithelium called the organ of Corti. There are two types of hair cells in the cochlea, which are organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains a few thousands of hair cells, and their survival is essential for our perception of sound because they are terminally differentiated and do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. However, the sheer number of cells along the cochlea makes manual quantification impractical. Machine learning can be used to overcome this challenge by automating the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, human, pig and guinea pig cochlear tissue, from normal conditions and following and ototoxic drug application. The dataset includes over 90'000 hair cells, all of which have been manually identified and annotated as one of two cell types: inner hair cells and outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to supply other groups within the hearing research community with the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.

摘要

我们的听觉由位于柯蒂氏器这一感觉上皮内的耳蜗毛细胞介导。耳蜗中有两种类型的毛细胞,它们排列成一排内毛细胞和三排外毛细胞。每个耳蜗包含数千个毛细胞,它们的存活对我们的听觉至关重要,因为它们是终末分化的,受损后不会再生。在听力研究中,通常希望在病理状况下以及对治疗的反应中量化耳蜗样本中的毛细胞数量。然而,耳蜗沿线的细胞数量众多,使得手动量化不切实际。机器学习可用于通过自动化量化过程来克服这一挑战,但需要大量多样的数据集进行有效训练。在本研究中,我们展示了大量带注释的耳蜗毛细胞数据集,这些数据集用常用的毛细胞标记物标记,并使用各种荧光显微镜技术成像。该数据集包括来自小鼠、人类、猪和豚鼠耳蜗组织的样本,涵盖正常状况以及耳毒性药物应用后的情况。该数据集包含超过90000个毛细胞,所有这些毛细胞都已被手动识别并注释为两种细胞类型之一:内毛细胞和外毛细胞。这个数据集是多个实验室共同努力的结果,并经过精心策划以代表各种成像技术。通过建议的使用参数和详细描述的注释程序,这个数据集可以促进通用的耳蜗毛细胞检测模型的开发,或作为微调用于其他分析任务的模型的起点。通过提供这个数据集,我们旨在为听力研究界的其他团队提供机会,使其能够开发自己的工具,以便更全面、准确且轻松地分析耳蜗成像数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c284/10491224/161e4a618b24/nihpp-2023.08.30.553559v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验