Fox Bennett W, Helf Maximilian J, Burkhardt Russell N, Artyukhin Alexander B, Curtis Brian J, Palomino Diana Fajardo, Chaturbedi Amaresh, Tauffenberger Arnaud, Wrobel Chester J J, Zhang Ying K, Lee Siu Sylvia, Schroeder Frank C
Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
Chemistry Department, College of Environmental Science and Forestry, State University of New York, Syracuse, New York 13210, United States.
bioRxiv. 2023 Aug 31:2023.08.31.555782. doi: 10.1101/2023.08.31.555782.
Fatty acid desaturation is central to metazoan lipid metabolism and provides building blocks of membrane lipids and precursors of diverse signaling molecules. Nutritional conditions and associated microbiota regulate desaturase expression, but the underlying mechanisms have remained unclear. Here, we show that endogenous and microbiota-dependent small molecule signals promote lipid desaturation via the nuclear receptor NHR-49/PPARα in . Untargeted metabolomics of a β-oxidation mutant, , in which expression of the stearoyl-CoA desaturase FAT-7/SCD1 is constitutively increased, revealed accumulation of a β-cyclopropyl fatty acid, becyp#1, that potently activates expression via NHR-49. Biosynthesis of becyp#1 is strictly dependent on expression of cyclopropane synthase by associated bacteria, e.g., . Screening for structurally related endogenous metabolites revealed a β-methyl fatty acid, bemeth#1, whose activity mimics that of microbiota-dependent becyp#1, but is derived from a methyltransferase, , that is conserved across Nematoda and likely originates from bacterial cyclopropane synthase via ancient horizontal gene transfer. Activation of expression by these structurally similar metabolites is controlled by distinct mechanisms, as microbiota-dependent becyp#1 is metabolized by a dedicated β-oxidation pathway, while the endogenous bemeth#1 is metabolized via α-oxidation. Collectively, we demonstrate that evolutionarily related biosynthetic pathways in metazoan host and associated microbiota converge on NHR-49/PPARα to regulate fat desaturation.
脂肪酸去饱和作用是后生动物脂质代谢的核心,它为膜脂提供结构单元以及多种信号分子的前体。营养条件和相关微生物群会调节去饱和酶的表达,但其潜在机制仍不清楚。在这里,我们表明内源性和微生物群依赖性小分子信号通过核受体NHR - 49/PPARα促进脂质去饱和。在一种β - 氧化突变体中进行的非靶向代谢组学研究发现,硬脂酰辅酶A去饱和酶FAT - 7/SCD1的表达持续增加,其中积累了一种β - 环丙基脂肪酸becyp#1,它能通过NHR - 49有效激活[具体内容缺失]的表达。becyp#1的生物合成严格依赖于相关细菌(如[具体细菌缺失])中环丙烷合酶的表达。对结构相关的内源性代谢物进行筛选发现了一种β - 甲基脂肪酸bemeth#1,其活性与微生物群依赖性的becyp#1相似,但它源自一种甲基转移酶[具体甲基转移酶缺失],该酶在整个线虫纲中保守,可能通过古老的水平基因转移源自细菌环丙烷合酶。这些结构相似的代谢物对[具体内容缺失]表达的激活由不同机制控制,因为微生物群依赖性的becyp#1通过专门的β - 氧化途径代谢,而内源性的bemeth#1通过α - 氧化代谢。总的来说,我们证明后生动物宿主和相关微生物群中进化相关的生物合成途径汇聚于NHR - 49/PPARα来调节脂肪去饱和。