Suppr超能文献

基于机器学习的 T 淋巴细胞运动行为分类。

Classification of T lymphocyte motility behaviors using a machine learning approach.

机构信息

Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada.

Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada.

出版信息

PLoS Comput Biol. 2023 Sep 11;19(9):e1011449. doi: 10.1371/journal.pcbi.1011449. eCollection 2023 Sep.

Abstract

T lymphocytes migrate into organs and interact with local cells to perform their functions. How human T lymphocytes communicate with organ-specific cells and participate in pathobiological processes remains unresolved. Brain infiltration of T lymphocytes is associated with multiple neurological disorders. Thus, to characterize the behavior of human T lymphocytes reaching the human brain, we performed time-lapse microscopy on human CD8+ T lymphocytes co-cultured with either primary human astrocytes or neurons. Using traditional manual and visual assessment of microscopy data, we identified distinct CD8+ T lymphocyte motility behaviors. However, such characterization is time and labor-intensive. In this work, we trained and validated a machine-learning model for the automated classification of behaviors of CD8+ T lymphocytes interacting with astrocytes and neurons. A balanced random forest was trained for the binary classification of established classes of cell behaviors (synapse vs. kinapse) as well as visually identified behaviors (scanning, dancing, and poking). Feature selection was performed during 3-fold cross-validation using the minimum redundancy maximum relevance algorithm. Results show promising performances when tested on a held-out dataset of CD8+ T lymphocytes interacting with astrocytes with a new experimenter and a held-out independent dataset of CD8+ T lymphocytes interacting with neurons. When tested on the independent CD8+ T cell-neuron dataset, the final model achieved a binary classification accuracy of 0.82 and a 3-class accuracy of 0.79. This novel automated classification approach could significantly reduce the time required to label cell motility behaviors while facilitating the identification of interactions of T lymphocytes with multiple cell types.

摘要

T 淋巴细胞迁移到器官中并与局部细胞相互作用以发挥其功能。人类 T 淋巴细胞如何与器官特异性细胞进行通信并参与病理生物学过程仍未得到解决。T 淋巴细胞浸润大脑与多种神经紊乱有关。因此,为了描述到达人脑的人类 T 淋巴细胞的行为,我们对与人原代星形胶质细胞或神经元共培养的人 CD8+T 淋巴细胞进行了延时显微镜观察。使用传统的显微镜数据手动和可视化评估,我们确定了不同的 CD8+T 淋巴细胞迁移行为。然而,这种特征描述既耗时又费力。在这项工作中,我们训练和验证了一个用于自动分类与星形胶质细胞和神经元相互作用的 CD8+T 淋巴细胞行为的机器学习模型。使用最小冗余最大相关性算法在 3 倍交叉验证期间进行了特征选择。结果表明,当在与星形胶质细胞相互作用的 CD8+T 淋巴细胞的保留数据集(由新实验员进行)和与神经元相互作用的独立保留数据集上进行测试时,该模型具有很好的性能。当在独立的 CD8+T 细胞-神经元数据集上进行测试时,最终模型的二进制分类准确率为 0.82,3 类分类准确率为 0.79。这种新的自动分类方法可以大大减少标记细胞迁移行为所需的时间,同时促进 T 淋巴细胞与多种细胞类型相互作用的识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2e/10513376/34515e43a98a/pcbi.1011449.g001.jpg

相似文献

1
Classification of T lymphocyte motility behaviors using a machine learning approach.
PLoS Comput Biol. 2023 Sep 11;19(9):e1011449. doi: 10.1371/journal.pcbi.1011449. eCollection 2023 Sep.
2
Capturing T Lymphocytes' Dynamic Interactions With Human Neural Cells Using Time-Lapse Microscopy.
Front Immunol. 2021 Apr 22;12:668483. doi: 10.3389/fimmu.2021.668483. eCollection 2021.
3
IL-27 shapes the immune properties of human astrocytes and their impact on encountered human T lymphocytes.
J Neuroinflammation. 2022 Sep 1;19(1):212. doi: 10.1186/s12974-022-02572-1.
4
Specific alterations in NKG2D T lymphocytes in relapsing-remitting and progressive multiple sclerosis patients.
Mult Scler Relat Disord. 2023 Mar;71:104542. doi: 10.1016/j.msard.2023.104542. Epub 2023 Jan 26.
5
Stress Signal ULBP4, an NKG2D Ligand, Is Upregulated in Multiple Sclerosis and Shapes CD8 T-Cell Behaviors.
Neurol Neuroimmunol Neuroinflamm. 2021 Dec 6;9(1). doi: 10.1212/NXI.0000000000001119. Print 2022 Jan.
7
9
Contribution of astrocyte-derived IL-15 to CD8 T cell effector functions in multiple sclerosis.
J Immunol. 2010 Nov 15;185(10):5693-703. doi: 10.4049/jimmunol.1002188. Epub 2010 Oct 6.
10
Initial Viral Inoculum Determines Kinapse-and Synapse-Like T Cell Motility in Reactive Lymph Nodes.
Front Immunol. 2019 Sep 6;10:2086. doi: 10.3389/fimmu.2019.02086. eCollection 2019.

引用本文的文献

1
Extant life detection using label-free video microscopy in analog aquatic environments.
PLoS One. 2025 Mar 12;20(3):e0318239. doi: 10.1371/journal.pone.0318239. eCollection 2025.

本文引用的文献

1
The immune synapses reveal aberrant functions of CD8 T cells during chronic HIV infection.
Nat Commun. 2022 Oct 28;13(1):6436. doi: 10.1038/s41467-022-34157-0.
2
IL-27 shapes the immune properties of human astrocytes and their impact on encountered human T lymphocytes.
J Neuroinflammation. 2022 Sep 1;19(1):212. doi: 10.1186/s12974-022-02572-1.
3
Stress Signal ULBP4, an NKG2D Ligand, Is Upregulated in Multiple Sclerosis and Shapes CD8 T-Cell Behaviors.
Neurol Neuroimmunol Neuroinflamm. 2021 Dec 6;9(1). doi: 10.1212/NXI.0000000000001119. Print 2022 Jan.
4
Capturing T Lymphocytes' Dynamic Interactions With Human Neural Cells Using Time-Lapse Microscopy.
Front Immunol. 2021 Apr 22;12:668483. doi: 10.3389/fimmu.2021.668483. eCollection 2021.
6
Initial Viral Inoculum Determines Kinapse-and Synapse-Like T Cell Motility in Reactive Lymph Nodes.
Front Immunol. 2019 Sep 6;10:2086. doi: 10.3389/fimmu.2019.02086. eCollection 2019.
9
Signal strength regulates antigen-mediated T-cell deceleration by distinct mechanisms to promote local exploration or arrest.
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):12151-6. doi: 10.1073/pnas.1506654112. Epub 2015 Sep 14.
10
T-cell-mediated regulation of neuroinflammation involved in neurodegenerative diseases.
J Neuroinflammation. 2014 Dec 2;11:201. doi: 10.1186/s12974-014-0201-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验