Suppr超能文献

PilB 与 c-di-GMP 相互作用,调节运动性和生物膜形成。

PilB interacts with c-di-GMP and modulates motility and biofilm formation.

机构信息

Department of Biological Sciences, Virginia Tech , Blacksburg, Virginia, USA.

出版信息

J Bacteriol. 2023 Sep 26;205(9):e0022123. doi: 10.1128/jb.00221-23. Epub 2023 Sep 11.

Abstract

The regulation of biofilm and motile states as alternate bacterial lifestyles has been studied extensively in flagellated bacteria, where the second messenger cyclic-di-GMP (cdG) plays a crucial role. However, much less is known about the mechanisms of such regulation in motile bacteria without flagella. The bacterial type IV pilus (T4P) serves as a motility apparatus that enables to move on solid surfaces. PilB, the T4P assembly ATPase, is, therefore, required for T4P-dependent motility in . Interestingly, T4P is also involved in the regulation of exopolysaccharide as the biofilm matrix material in this bacterium. A newly discovered cdG-binding domain, MshE, is conserved in the N-terminus of PilB (PilB) in and other bacteria. This suggests that cdG may bind to PilB to control the respective outputs that regulate biofilm development and T4P-powered motility. In this study, we aimed to validate PilB as a cdG effector protein. We performed a systematic mutational analysis of its cdG-binding domain to investigate its relationship with motility, piliation, and biofilm formation. Excluding those resulting in low levels of PilB protein, all other substitution mutations in PilB resulted in mutants with distinct and differential phenotypes in piliation and biofilm levels in . This suggests that the PilB domain plays dual roles in modulating motility and biofilm levels, and these two functions of PilB can be dependent on and independent of each other in . IMPORTANCE The regulation of motility and biofilm by cyclic-di-GMP in flagellated bacteria has been extensively investigated. However, our knowledge regarding this regulation in motile bacteria without flagella remains limited. Here, we aimed to address this gap by investigating a non-flagellated bacterium with motility powered by bacterial type-IV pilus (T4P). Previous studies hinted at the possibility of PilB, the T4P assembly ATPase, serving as a cyclic-di-GMP effector involved in regulating both motility and biofilm. Our findings strongly support the hypothesis that PilB directly interacts with cyclic-di-GMP to act as a potential switch to promote biofilm formation or T4P-dependent motility. These results shed light on the bifurcation of PilB functions and its pivotal role in coordinating biofilm formation and T4P-mediated motility.

摘要

生物膜和运动状态的调节是细菌的两种不同生活方式,在鞭毛菌中已经得到了广泛的研究,在鞭毛菌中,第二信使环二鸟苷酸(cdG)起着关键作用。然而,对于没有鞭毛的运动细菌,人们对这种调节机制知之甚少。细菌 IV 型菌毛(T4P)作为一种运动装置,使 能够在固体表面上移动。T4P 组装 ATP 酶 PilB 因此是 中 T4P 依赖性运动所必需的。有趣的是,T4P 也参与了该细菌生物膜基质物质胞外多糖的调节。一个新发现的 cdG 结合结构域,MshE,在 中的 PilB(PilB)和其他细菌的 N 端保守。这表明 cdG 可能与 PilB 结合,以控制调节生物膜发育和 T4P 动力运动的各自输出。在这项研究中,我们旨在验证 PilB 是一种 cdG 效应蛋白。我们对其 cdG 结合结构域进行了系统的突变分析,以研究其与运动、菌毛形成和生物膜形成的关系。除了导致 PilB 蛋白水平降低的突变外,PilB 的所有其他取代突变都导致 在 中菌毛形成和生物膜水平的表型明显不同。这表明 PilB 结构域在调节运动和生物膜水平方面具有双重作用,并且 PilB 的这两个功能在 中可以相互依赖和独立。重要性 在鞭毛菌中,cdG 对运动和生物膜的调节已经得到了广泛的研究。然而,我们对无鞭毛运动细菌中这种调节的认识仍然有限。在这里,我们旨在通过研究一种具有由细菌 IV 型菌毛(T4P)驱动的运动的非鞭毛细菌来解决这一差距。先前的研究表明,T4P 组装 ATP 酶 PilB 可能作为一种参与调节运动和生物膜的环二鸟苷酸效应物。我们的发现强烈支持 PilB 直接与环二鸟苷酸相互作用作为促进生物膜形成或 T4P 依赖性运动的潜在开关的假设。这些结果揭示了 PilB 功能的分支及其在协调生物膜形成和 T4P 介导的运动中的关键作用。

相似文献

本文引用的文献

4
Mechanical limitation of bacterial motility mediated by growing cell chains.生长菌链介导的细菌运动的力学限制。
Biophys J. 2022 Jun 21;121(12):2461-2473. doi: 10.1016/j.bpj.2022.05.012. Epub 2022 May 18.
5
Analysis of Vegetative Biofilms With Microtiter Plates.使用微量滴定板分析营养生物膜
Front Microbiol. 2022 Apr 29;13:894562. doi: 10.3389/fmicb.2022.894562. eCollection 2022.
7
Bacterial motility: machinery and mechanisms.细菌运动性:机制与原理
Nat Rev Microbiol. 2022 Mar;20(3):161-173. doi: 10.1038/s41579-021-00626-4. Epub 2021 Sep 21.
8
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验