Poches Christopher, Razzaq Amir Abdul, Studer Haiden, Ogilvie Regan, Lama Bhubnesh, Paudel Tula R, Li Xuguang, Pupek Krzysztof, Xing Weibing
Department of Mechanical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States.
Department of Physics, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States.
ACS Appl Mater Interfaces. 2023 Sep 20;15(37):43648-43655. doi: 10.1021/acsami.3c06586. Epub 2023 Sep 11.
As state-of-the-art (SOA) lithium-ion (Li-ion) batteries approach their specific energy limit (∼250 Wh kg), layer-structured, nickel-rich (Ni-rich) lithium transition metal oxide-based cathode materials, e.g., LiNiMnCoO (NMC811), have attracted great interest owing to their practical high specific capacities (>200 mAhg). Coupled with their high average discharge voltages (∼4 V vs Li/Li), Ni-rich cathode-based lithium batteries possess a great potential to achieve much higher specific energies (>350 Wh kg at the cell level) than the SOA Li-ion counterparts. In addition, Ni-rich oxides are low-cost battery cathode materials due to their low cobalt contents. However, Ni-rich cathode-based lithium batteries suffer quick capacity degradations upon cycling, particularly at high upper cutoff voltages (e.g., ≥4.5 V vs Li/Li), due to crystal structure changes of the active cathode materials and parasitic side reactions at the electrolyte/electrode interfaces. In this study, a fluorinated-solvent-based, high-voltage stable electrolyte (HVE), i.e., 1 M Li bis(trifluoromethanesulfonyl)imide (LiTFSI) in fluoroethylene carbonate (FEC), bis(2,2,2-trifluoroethyl) carbonate (FDEC), and methyl (2,2,2-trifluoroethyl) carbonate (FEMC) with Li difluoro(oxalate)borate (LiDFOB) additive, was formulated and evaluated in Li/NMC811 battery cells. To the best of our knowledge, this class of electrolyte has not been investigated for Ni-rich cathode-based lithium batteries. Li/NMC811 cells with HVE exhibited a superior long-term cycle performance stability, maintaining ∼80% capacity after ∼500 cycles at a high cutoff voltage of 4.5 V (vs Li/Li) than a baseline carbonate-solvent-based electrolyte (BE). The superior cycle stability of the Li/NMC811 cells is attributed to the inherently high-voltage stability of HVE, supported by the physical and electrochemical analyses. This conclusion is supported by our density functional theory (DFT) modeling where HVE shows a less tendency of deprotonation/oxidation than BE, leading to the observed cycle stability. The findings in this study are important to help tackle the technical challenges facing Ni-rich cathode-based lithium batteries to realize their high energy density potentials with a long cycle life.
随着最先进的(SOA)锂离子(Li-ion)电池接近其比能量极限(约250 Wh/kg),层状结构、富镍(Ni-rich)的锂过渡金属氧化物基正极材料,例如LiNiMnCoO(NMC811),因其实际的高比容量(>200 mAh/g)而备受关注。再加上它们较高的平均放电电压(相对于Li/Li约为4 V),基于富镍正极的锂电池具有比SOA锂离子电池实现更高比能量(在电池层面>350 Wh/kg)的巨大潜力。此外,富镍氧化物由于钴含量低,是低成本的电池正极材料。然而,基于富镍正极的锂电池在循环过程中,特别是在高上限截止电压(例如,相对于Li/Li≥4.5 V)下,由于活性正极材料的晶体结构变化以及电解质/电极界面处的寄生副反应,会迅速出现容量衰减。在本研究中,配制了一种基于氟化溶剂的高压稳定电解质(HVE),即1 M双(三氟甲磺酰)亚胺锂(LiTFSI)溶解在氟代碳酸乙烯酯(FEC)、双(2,2,2-三氟乙基)碳酸酯(FDEC)和甲基(2,2,2-三氟乙基)碳酸酯(FEMC)中,并添加了二氟(草酸)硼酸锂(LiDFOB),并在Li/NMC811电池中进行了评估。据我们所知,这类电解质尚未针对基于富镍正极的锂电池进行研究。与基线碳酸酯溶剂基电解质(BE)相比,使用HVE的Li/NMC811电池在4.5 V(相对于Li/Li)的高截止电压下循环约500次后表现出优异的长期循环性能稳定性,容量保持在约80%。Li/NMC811电池优异的循环稳定性归因于HVE固有的高压稳定性,这得到了物理和电化学分析的支持。我们的密度泛函理论(DFT)建模也支持这一结论,其中HVE显示出比BE更小的去质子化/氧化倾向,从而导致观察到的循环稳定性。本研究中的发现对于帮助解决基于富镍正极的锂电池所面临的技术挑战,以实现其具有长循环寿命的高能量密度潜力具有重要意义。