Suppr超能文献

理解关于不孕不育的难忘信息:按主题和发送者考察信息的情感倾向。

Making Sense of Memorable Messages About Infertility: Examining Message Valence by Theme and Sender.

机构信息

Communication Studies, University of Montana.

Communication Studies, University of Nebraska-Lincoln.

出版信息

Health Commun. 2024 Sep;39(10):2053-2065. doi: 10.1080/10410236.2023.2254928. Epub 2023 Sep 11.

Abstract

Fertility problems, often called infertility, have been defined as the inability to conceive or maintain pregnancy throughout one year of trying (World Health Organization, 2020). Because fertility problems can present unique medical, emotional, relational, and identity challenges, they are often difficult to talk about, and even well-intentioned messages can be perceived negatively. This study uses Communicated Sense-Making (CSM; Kellas & Kranstuber Horstman, 2015), particularly its mechanism of memorable messages, to explore what types of support-related messages people experiencing infertility find memorable. Results from semi-structured interviews ( = 54) indicate five supra-themes of memorable messages: (a) communicating solidarity; (b) attempting to minimize participants' stress; (c) communicating investment or interest in the patient's experience; (d) sharing expertise; and (e) absolving the patient of responsibility; we identify several sub-themes within each. We also explore patterns between message types, senders, and message valence: message themes were perceived as either positive, negative, or neutral based on the combination of sender and perceived intention. Theoretical and practical implications are discussed.

摘要

生育问题,通常被称为不孕不育,被定义为在尝试怀孕一年后仍无法怀孕或维持妊娠(世界卫生组织,2020 年)。由于生育问题可能会带来独特的医疗、情感、关系和身份挑战,因此通常难以谈论,即使是善意的信息也可能被负面感知。本研究使用传播意义建构(CSM;Kellas & Kranstuber Horstman,2015),特别是其有记忆信息的机制,来探索人们在经历不孕不育时会记住哪些类型的支持性信息。半结构访谈的结果(n=54)表明,有记忆的信息有五个超主题:(a)传达团结;(b)试图减轻参与者的压力;(c)传达对患者经历的投入或兴趣;(d)分享专业知识;以及(e)免除患者的责任;我们在每个主题中都确定了几个子主题。我们还探讨了信息类型、发送者和信息效价之间的模式:根据发送者和感知意图的组合,信息主题被视为积极、消极或中性。讨论了理论和实践意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验